【摘 要】
:
可变刚度材料是一种能感知并识别外部刺激,从而实现自身刚度变换的材料。由可变刚度材料所制作的构件,在温度、电、光等的刺激下,相应的位置发生刚度变化。其在医学、软体机器人、土木工程、航空航天等领域有着广泛的应用。目前可变刚度功能的主要实现方式大多需要外部做功导致结构复杂庞大,且变化范围小、响应较慢、有较大的机械损耗。低熔点合金(LMPA)由于其低熔点特性,在温度不高于其熔点(30-300°C)时保持较
论文部分内容阅读
可变刚度材料是一种能感知并识别外部刺激,从而实现自身刚度变换的材料。由可变刚度材料所制作的构件,在温度、电、光等的刺激下,相应的位置发生刚度变化。其在医学、软体机器人、土木工程、航空航天等领域有着广泛的应用。目前可变刚度功能的主要实现方式大多需要外部做功导致结构复杂庞大,且变化范围小、响应较慢、有较大的机械损耗。低熔点合金(LMPA)由于其低熔点特性,在温度不高于其熔点(30-300°C)时保持较强的机械性能,在高于其熔点时,LMPA由固态转变为液态,力学性能发生显著变化。将LMPA的低熔点特性与3D打印优势相结合,通过LMPA与高分子材料复合后打印或同轴挤出的方式,实现LMPA变刚度构件的一体打印成型。本课题通过LMPA的固液相转换实现变刚度的功能。基于熔融沉积制造(FDM)工艺的基本原理,从材料的角度出发,使用单螺杆挤出机制备聚乳酸(PLA)/LMPA的复合线材并用于打印,从微观形貌的观察、力学性能的表征对复合材料的打印制品进行分析。此外,从打印设备的角度出发,提出热塑性材料包裹LMPA的3D同轴打印的制造方法。从设备的搭建、制品的表征、数值模拟三个方面探究了LMPA变刚度构件的3D同轴打印制备技术。主要研究内容如下:(1)提出一种可用于打印的LPMA与高分子材料复合线材的制备方法,探究了复合材料实现温控变刚度的可行性。对打印制品进行了力学性能的表征。并通过对PLA/LMPA制品微观形貌的观察分析了刚性粒子作为填充相改变复合材料力学性能的原因。验证了通过LMPA的固液转换实现变刚度的方法。(2)设计同轴挤出设备的控制系统、加热系统、进料系统等,最终成功搭建热塑性材料与LMPA同轴挤出的3D打印设备。通过对热塑性材料与LMPA的3D同轴打印进行Fluent仿真,探究了两种材料在喷嘴内的受热情况、受力情况、运动情况等,分析了制品成型的最佳打印参数,与实验结果对比分析,为3D同轴打印实验提供理论依据与参考;(3)通过实验探究了常见的3D打印材料与LMPA同轴挤出的最佳成型打印参数,并进一步举例探究了打印参数对尼龙(PA)/LMPA 3D同轴打印质量的影响;(4)对3D同轴打印的可变刚度结构进行应用场景的探究,测试了LMPA的固液转变带来的机械性能、基频等变化,为后续的进一步研究开拓新的方向。
其他文献
航天器的运行精度和服役寿命与材料的结构和特性息息相关,航天轴承一般在高速、高压、高温的环境下服役工作,长时间运行的轴承产生的摩擦磨损已成为轴承失效的主要问题,因此,轴承保持架的选材也十分苛刻。近年来,得益于智能材料的快速发展,自润滑材料的研究引起了众多学者的关注,微胶囊技术和自润滑材料的结合成为复合材料研究热点的问题。本文采用原位聚合法将液体润滑剂等材料封装在脲醛树脂中制备得到多种微胶囊,将其填充
传统的近视眼镜制造方式只允许一套模具生产一种度数的眼镜,多种度数眼镜的制造需要多套模具,繁琐的制造过程限制了其成型效率。因此,为实现一套模具生产不同度数眼镜的需求,提出眼镜柔性制造成型方法并开发一套眼镜柔性制造成型系统具有重要意义。近视眼镜的原理是通过改变镜片曲率来改变光线折射路线,进而在视网膜上形成清晰的像。在注射成型过程中,镜片形状依据型腔形状成型,改变型腔形状便可改变镜片曲率。本课题基于多点
消声瓦常被用于吸收外来探测声波,以降低舰船等水下航行器目标强度。传统结构的消声瓦很难实现兼备良好的耐压性和吸声性能。已有的报道中,通过仿真分析研究静水压对消声瓦吸声性能的影响,是将消声瓦橡胶基体视为线性本构模型,计算结果与实验差距较大。设计并制备了内部含空腔、铝支撑环和基体芯的锥环复合结构消声瓦,具有良好的吸声和耐压性。并实现“力-声耦合”,用超弹性本构模型表征橡胶力学性能,研究了静水压对消声瓦声
<正>传统尸体标本灌注时,灌注胶管的远端用Y形管连接2个灌注用插管(金属、玻璃、塑料),插管的末端制成壶腹形,便于结扎,不易滑脱(也可连接2个注射器头),2个插管或针头分别向远端和近端插入动脉切口,以便同时向远、近2个方向灌注[1],但在实际操作中常引起插管脱落、液体外漏、切开动脉致灌注部位结构破坏多等情况。为了避免上述不利因素,笔者尝试采用静脉留置针代替注射用插管行动脉灌注尸体标本,取得了较好的
原位微纤复合材料具有更高的强度和刚度以及更低的密度,并且微纤在基体中具有特定的取向。其不仅能够克服玻璃纤维、碳纤维等填充的复合材料的一些缺点,如加工性能差、难回收等,而且还有很好的增强效果。因此,原位微纤复合材料越来越备受大家的关注。本课题首先使用同向双螺杆对聚丙烯(PP)/尼龙66(PA66)进行熔融共混,然后再次使用双螺杆对其共混物进行挤出、牵引机拉伸,制得PP/PA66原位微纤复合材料。研究
防水透湿透气材料,作为一种可以单向导湿单向防水的特殊面料,在医疗隔离、保暖防护、卫生护理等领域有着广阔的应用前景,作为新冠疫情最重要的物资之一的防护服,其基本原材料就是具有防护功能的防水透湿透气材料。而随着全球新冠疫情的复杂变化,对医用防护、个人防护用品等有大量需求,对防水透湿透气材料的需求还将持续增加,这都需要足够的防水透湿透气材料来满足需求。目前主要的防水透湿透气材料难以在防水性、透湿性、舒适
锻造过程中,周期性的冷热载荷和机械载荷会使锻模表层出现过度磨损、开裂等非正常失效现象,不仅会增加企业生产成本、降低企业生产效率,还可能会威胁到员工的人身安全。本文以提高热锻模具寿命为目标,通过对钢质预锻活塞裙模具进行失效分析,确定了影响模具寿命的主要因素;基于“变形协调”及“膜-基一体化”理论,设计ZrTiN/TiAl N纳米多层梯度涂层,系统研究了弧源电流与基体偏压对所制备涂层性能的影响,通过分
纤维直接喂入注射成型技术(Direct Fiber Feeding Injection Molding,以下简称DFFIM)作为新兴的纤维增强热塑性塑料成型方法,不仅具有加工方便、操作简单和减污增效的特点,还可以根据需求灵活调控纤维和基体的种类与比例,大幅提高复合材料的力学性能。目前,虽然德国Arburg和日本三菱重工等企业已经在DFFIM技术上有所突破,但是国内的直接注射成型领域缺乏相关研究。开
轴承作为机械中常用关键部件,轴承故障严重掣肘主机的性能、寿命和可靠性。以往研究经验表明,对轴承故障进行诊断具有必要性、可行性和巨大的经济价值。本文将以深度学习模型为工具研究影响轴承故障诊断的因素,同时对方法进行改进、创新和应用。主要研究内容如下:第一,以两个经典的深度学习模型VGG-16和Res Net-50为工具,研究了故障位置、类型,轴承负载、转速,信号类型,网络深度,模型输入等对轴承故障诊断