【摘 要】
:
离子液体由于其极低的饱和蒸汽压、良好的溶解能力和耐辐射性能,被认为是乏燃料处理领域的理想替代溶剂。将传统的镧锕萃取剂辛基(苯基)-N,N-二异丁基胺甲酰基甲基氧化膦(CMPO)、N,N-四辛基-3-氧戊二酰胺(TODGA)、氮杂多环芳烃类萃取剂(BTPs)溶解于离子液体中,形成的新型萃取体系被认为显著提升了萃取效率。由于乏燃料处理的应用环境难免存在辐射,所以对萃取体系进行辐解效应研究是评价其是否具
论文部分内容阅读
离子液体由于其极低的饱和蒸汽压、良好的溶解能力和耐辐射性能,被认为是乏燃料处理领域的理想替代溶剂。将传统的镧锕萃取剂辛基(苯基)-N,N-二异丁基胺甲酰基甲基氧化膦(CMPO)、N,N-四辛基-3-氧戊二酰胺(TODGA)、氮杂多环芳烃类萃取剂(BTPs)溶解于离子液体中,形成的新型萃取体系被认为显著提升了萃取效率。由于乏燃料处理的应用环境难免存在辐射,所以对萃取体系进行辐解效应研究是评价其是否具备实际应用价值的前提。辐解产物的微量性和多样性一直是辐解研究的难点,同时,由于离子液体不挥发、溶解能力强
其他文献
在直流微网系统中,微网元素的多样性和波动性对电力电子接口单元的设计提出了新的挑战,并极大推动了相关技术的进步。例如应用于新能源发电系统和储能系统的单向和双向直流变换器需要具备高电压增益、高传输效率和低输入电流纹波的特点。当开关管占空比逐渐趋近于1时,传统buck/boost变换器理论上可以实现无穷大电压增益。然而在实际应用中,受电感寄生电阻的影响,其电压增益有限,因而并不适用于直流微网系统。如何构
聚合物太阳电池(PSCs)由于具有柔性、质轻、可溶液加工和大面积制备等突出优点而备受科学家们的关注。近年来,随着高效材料体系的开发和器件工艺的优化,PSCs器件的光电转换效率(PCE)获得了突破性的进展。目前已报道的PSCs最高PCE已经超过18%。然而PSCs在商业化应用的道路上,还有许多问题亟待解决。进一步开发性能优异的活性层材料和阴极界面材料是其中的重要挑战。本论文主要围绕新型n型有机半导体
众所周知,锂离子电池由于其具有优异的循环稳定性、良好的安全性以及极高的理论能量密度等一系列的优势一直以来受到了各方面的关注,并且已经在移动电子设备以及动力电池方面得到了广泛的应用。然而,目前商业化所使用的锂离子电池在能量密度以及循环寿命方面已经难以满足人们的需要。因此,开发新一代具有高能量密度以及长循环寿命的新型电池体系迫在眉睫。在众多的电化学能源存储体系中,锂-硫电池由于高的理论能量密度(全放电
步入工业化社会以来,不可再生资源的过度开采与大幅消耗导致了严重的环境污染与能源危机问题,促使人们开发新型能量转换系统。以燃料电池、锌-空电池和电解水为代表的高效可再生新型能源技术引起了社会的广泛关注和研究。在能量转换过程中,这些器件主要涉及到三个重要的半反应:氧还原反应(ORR)、析氧反应(OER)和析氢反应(HER)。其缓慢的动力学速率,高过电位和低能量转换效率导致了这些反应需要大量的Pt、Ru
电子产品与新能源电车的不断发展对储能设备的要求越来越高,而传统锂离子电池由于有限的能量密度很难满足需求,因此需要开发出高能量密度的电池。锂硫电池(Li-S)由于高的理论比容量(1675mAhg~(-1))和能量密度(2600Whkg~(-1))吸引了研究者的关注,是非常有前途的候选者。同时,硫在自然界存储丰富、价格低廉和无毒化等优点完全满足电池材料的要求。但是,Li-S电池有许多问题限制了它的实际
由化石燃料的过度消耗所导致的能源危机和环境污染等问题制约了社会的可持续发展,寻找绿色可循环的能源存储与转换技术迫在眉睫。锌空气电池因其理论能量密度高、环保、安全、成本低等优点而备受关注。锌空气电池的空气正极是最昂贵的电池部件之一,也是决定锌空气电池性能的关键因素。作为一种关键反应过程,O_2在电解质和催化剂间传质的难易程度决定了反应过程的效率。合理设计催化剂结构,使空气阴极的性能最大化具有重要意义
复杂服役环境中,种类繁多的高浓度盐离子向混凝土内部侵蚀,与混凝土内的水化产物发生腐蚀反应,导致混凝土劣化损伤。这是一个离子扩散,化学反应以及力学损伤耦合的复杂物—化—力变化过程。本研究通过大量试验研究了Na_2SO_4溶液、Mg SO_4溶液、Mg SO_4/Na Cl溶液和Na_2SO_4/Na Cl/K_2CO_3溶液四种高浓度侵蚀性溶液浸泡下混凝土中的离子迁移和产物分布,以及混凝土在侵蚀过程
催化转化可再生的生物质及其衍生化合物制备生物燃料和高值化学品,对人类社会的可持续发展具有重要意义。糠醛、5-羟甲基糠醛、香草醛、肉桂醛等来源于生物质的平台分子,被认为是连接生物质和可再生化学品的桥梁。然而,现有的催化体系存在催化剂催化活性低、产物选择性低、反应条件苛刻、催化剂制备过程复杂、制备原料昂贵且不可再生、制备过程使用有毒试剂等缺点。本论文围绕新型高效催化剂的绿色构建,以廉价生物质衍生物或者
纤维增强复合材料(FRP)与混凝土之间的界面剥离是导致FRP加固钢筋混凝土(RC)结构破坏的关键因素,FRP-混凝土界面剥离破坏机理的探明对于FRP加固技术及FRP-混凝土复合结构的发展具有重要的科学意义和广阔的应用前景。针对该领域研究中长期以来采用基于FRP-混凝土界面粘结~滑移关系的传统强度理论无法准确描述界面开裂后的破坏行为等科学问题,本文尝试采用断裂力学理论对FRP-混凝土界面的破坏行为进
内陆水体有机碳循环是全球碳循环研究的重要基础。有色溶解性有机物(CDOM)具有特殊的吸光性,是水体溶解性有机碳的重要固有光学组分,对于解析溶解性有机物的来源组分、反演水体水色参数和进行水质参数遥感监测具有重要的实际应用价值。内陆水体有机物来源较为复杂,其光学特性也较为复杂,从而导致内陆水体CDOM浓度具有极大的空间差异性。水库是内陆水体的重要组成部分,由于受到水体富营养化和有机物污染等人类活动干扰