合金微球凝固传热和枝晶生长相场法模拟研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:chinagirlxin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
脉冲微孔喷射法是一种单分散微球粒子制备方法,可制备多种材料,涵盖金属、非金属、金属玻璃等,制备的微球具有粒径均一、尺寸分布窄、球形度高等优点,广泛应用于电子封装、增材制造等领域。目前,脉冲微孔喷射法的工艺设计与优化主要依赖实验观察及理论解析,缺少针对合金微球制备过程的数值建模与计算预测的量化研究。本文重点围绕合金微球凝固过程的传热与枝晶生长行为的建模与数值计算方法进行研究,构建基于立方体单元有限差分的金属微球三维传热数值计算模型,在此基础上,建立二元合金微球凝固枝晶生长相场法数值计算模型,设计开发专用计算程序,计算讨论不同制备工艺下微球的温度分布与变化特征,对微球凝固过程中的枝晶生长与形貌演化进行模拟和分析,具体工作内容如下。针对脉冲微孔喷射法合金微球制备和凝固过程中的传热行为及特征,以有限差分法为手段,建立基于立方体单元的合金微球凝固传热数值计算模型,其中包括球形计算域差分网格、微球传热控制方程及运动模型,定义了计算域网格的体积损失和面积校正系数以保证计算精度,通过与极坐标系相同条件的传热计算结果进行对比,温度计算结果基本一致,证明了建立的模型和计算方法具有较高的计算精度。依据建立的球形计算域差分网格和微球传热及运动数值模型,利用C++编程语言开发出基于有限差分法的传热计算程序,计算并探讨了不同制备工艺下微球的温度场分布以及对流和辐射换热密度的变化规律。结果表明:He气保护气氛、初速度1m/s条件下,330μm粒径微球完全凝固用时约0.077s,390μm粒径用时约0.100s,485μm粒径用时约0.143s,微球的粒径越大,其冷却速度越缓慢;微球下落初速越大,冷却速度越快;加热温度对冷却速度影响较小;对于相同粒径微球,在He气下的平均凝固速度约为Ar气的3.8倍;辐射换热的热流密度随着微球粒径的增大而增大,对流换热的热流密度远高于辐射换热。在上述工作的基础上,以合金微球凝固过程的微观枝晶形貌为研究对象,建立了合金微球凝固过程枝晶生长的三维相场法数值计算模型,逐次构建相场、温度场和溶质场控制方程,确立数值计算的初始条件和边界条件,开发出基于有限差分法的枝晶生长相场计算程序,计算探讨微球凝固过程的枝晶生长行为及相关规律和特征。结果表明:随着过冷度的增大,枝晶生长速度加快,各向异性因子对枝晶的形貌特征有较大影响,是枝晶能否形成发达二次枝晶的重要因素之一,考虑对流及辐射换热后,枝晶在稳定生长一段时间后会快速生长。本文建立的相场法数值模型与计算结果为探讨合金微球凝固过程的枝晶生长行为提供参考。
其他文献
铝及其合金广泛用于制作架空输电导线,大跨度的架空输电线路对导线的弧垂有极高的要求。刚度和屈服强度是低弧垂设计的核心材料指标,由于铝及其合金本身的弹性模量提升空间有限,综合考虑弧垂和强度难以满足要求,因此目前国产大跨度架空线路仍采用钢芯铝绞线。然而,由于全铝合金绞线优异的载流与耐候特性,替代钢芯铝绞线已经成为电力系统发达程度的衡量指标之一。因此提升铝导线的弹性模量,降低全铝合金架空线路弧垂是该领域的
学位
钛合金在20世纪以来发展极为迅速,由于它有着低密度、高强度的特点,被广泛应用到航空航天,汽车,化工,海洋,电子等众多领域。但由于在部分特定工况下,钛合金的表面硬度不够高,因而很容易出现磨损、腐蚀致使零件寿命下降乃至损坏。其不利于钛合金在各行业领域中的进一步推广。现今,通过表面改性技术针对钛合金表面进行防护成为一种思路,然而,其中大部分技术都存在着各自的缺点,如成本高,工艺复杂,熔覆层厚度受限等。本
学位
传统红外隐身材料发射率较高,散热和红外隐身性能差。光子晶体由于其光子禁带特性可对特定波段的红外光产生布拉格反射,降低目标的吸收率,实现低红外发射率。国内外现已有较多学者进行红外隐身光子晶体的设计,然而多数只涉及高、低折射率材料的组合,但材料和结构往往决定了光子晶体实际隐身性能的优劣,目前从理论出发分析光子晶体亚层材料、结构等因素对隐身性能影响较少。为制备更符合实际复杂工况的隐身光子晶体,本论文系统
学位
火力发电是我国的主要的发电方式,为提高发电效率,减少环境污染,实施清洁、高效、可持续成为能源发展应用的新目标,超(超)临界燃煤发电技术必将继续发展和应用,奥氏体耐热钢HR3C因其优异的高温性能、耐蚀性能是当今USC发电机组过热器与再热器的主力钢种。HR3C钢在服役过程中,存在由于温度的波动,仪器频繁启停使部件寿命降低的现象,此时HR3C钢承受高温循环载荷的冲击,导致部件内部永久性的损伤,进而导致寿
学位
铸造行业是国家工业制造的重要基础,伴随着工业设备所需锻件往高质量、大型化方向发展,与之对应的大型钢锭的质量要求也更加严格。由于大型钢锭通常采用模铸的方法进行生产,在充型和凝固过程中无法直接进行观察和控制,因此计算机模拟技术已经成为铸造工艺优化研究的重要手段。经过多年的研究和发展,关于大型钢锭的数值模拟已经取得了巨大的进步,但仍然存在一些关键问题尚未解决。主要表现在数学模型的建立或模拟参数的设置难以
学位
在金属材料热加工过程中,热的金属与冷的模具之间存在剧烈的热量交换,将影响模具型腔尺寸、零件成形精密度和内部微观组织,进而影响模具和零件的服役性能和寿命。金属与模具间的换热受到材料、温度、界面压力、表面状态等多工艺因素影响,使得界面接触换热特性变化复杂,难以准确表征。同时,接触换热系数作为其重要的边界条件,是金属塑性成形数值模拟计算中的重要参数,其数据的准确性将影响数值计算温度场的可靠性。在金属热加
学位
为了缓解能源危机,早日实现“碳中和”目标,当前在我国太阳能、风能、潮汐能等清洁能源已逐渐被开发利用。然而,上述自然能源虽然总量巨大但受自然条件约束较大,因此如何开发大规模储能工程至关重要。钠离子电池因具有原材料资源丰富、价格低廉、环境友好等优势,在大规模储能领域正逐步取代锂离子电池。因此,开发高性能负极材料是推动钠离子电池工程化的核心关键,而乱层堆叠的硬炭材料由于有利于Na+储存被认为是最具有商业
学位
航空发动机的发展水平制约先进航空飞机的性能,涡轮盘作为关键的热端部件,其性能对减轻发动机结构重量,提高推重比方面具有重要影响。高性能发动机涡轮盘多采用FGH96和GH4169高温合金制造,各级盘之间通常采取焊接方式连接,然而高温合金的化学成分比较复杂,焊接温度变化对组织影响较大,惯性摩擦焊凭借其优良的特色优势成为涡轮盘连接最主要的方式。传统的焊接工艺研究多采用“试错法”,试验过程需要严格控制变量,
学位
钛合金具有诸多优异的性能,在航空航天、石油开采、生物医疗及特种装甲等领域中得到广泛应用。然而其表面性能的不足同样也限制了其应用范围,使用激光熔覆技术在钛合金表面制备一层性能优异的表面涂层可有效改善其表面性能不足的缺陷。本文使用TC21钛合金作为基体,通过使用激光熔覆技术,设计并制备Ti-Al基复合粉末,成功制得一层性能优异的涂层,分别研究WC含量变化、激光工艺参数及CeO2添加量对涂层组织与性能的
学位
传统合金性能单一,无法满足航空航天、航海、核等领域对材料的综合性能要求,多组元高熵合金拥有的优秀综合性能,例如耐高温氧化、耐腐蚀、低温韧性、耐磨、强塑性、抗辐射等,受到了金属材料领域的广泛关注和研究。因此应用高熵合金替代传统合金在高端领域进行服役是一条可行路径,高熵合金的研究具有深远意义和前景。高熵合金并不是理想中的拥有完美综合性能的合金,仍存在性能缺陷,传统合金中的强塑性矛盾同样制约着多组元高熵
学位