涡轮叶片凹槽叶顶流动特性及叶尖间隙泄漏流研究

来源 :南京航空航天大学 | 被引量 : 0次 | 上传用户:Kimyueyue
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
间隙泄漏流对涡轮传热及内部流动损失有显著的影响,了解泄漏流流动机理并采取措施降低泄漏流产生的不利影响,能提升涡轮的气热性能。目前对于平顶叶片及凹槽叶片,间隙及凹槽内流场结构实验探究较少。因此本文探究了叶片间隙及吸力侧流场的变化,分析叶顶开槽对流场的影响,同时关注凹槽内流场结构,探究了进口雷诺数Re及凹槽深度比d/H对流场结构的影响,完善叶顶区域流动机理和凹槽叶片间隙泄漏流抑制技术的研究。在开展静止叶栅实验前,首先需要对叶栅通道周期性和PIV测试精度进行验证。实验结果表明:风洞出口最大湍流度为9.2%,满足实验需求;同时对比目标叶片两侧平均速度,相对误差小于6%,验证了设计的叶栅通道能满足实验周期性要求;最后,通过经典单圆孔稳态射流实验,得到轴向平均速度和脉动速度与参考实验值最大误差为1.3%和4.1%,由此验证了PIV测试精度满足要求。其次,在叶栅实验台上开展了平顶及凹槽叶片泄漏流流动特性实验,通过PIV技术对比间隙及叶片吸力侧流场,同时探究了凹槽内流场变化。实验结果表明:从前缘到尾缘泄漏涡逐渐增强,尺寸范围增加,并逐渐偏离叶片吸力侧。泄漏流在凹槽中分离再附,形成大尺度涡,旋涡沿叶高方向向间隙发展,对泄漏流有阻碍作用,从而减小泄漏流量,降低泄漏损失。然后,通过改变进口雷诺数Re及凹槽深度d/H等获得不同叶顶结构下凹槽及主流通道内流场结构特征。实验结果表明:随着雷诺数增大,凹槽内及吸力侧流体的速度梯度增加,高涡量区域增大,泄漏涡与主流流体卷吸作用增强,凹槽对泄漏流的控制效果越明显。随着凹槽深度增加,泄漏涡区域流速降低,泄漏损失降低,但存在最佳凹槽深度,在达到最佳凹槽深度后,凹槽对泄漏流的影响降低。最后,针对泄漏流流动换热特性数值进行仿真研究。仿真结果表明:在间隙高度为1.5%时,凹槽深度比为5%时相对泄漏量最低,同时间隙内的总压损失最小,此时最有利于泄漏流量控制,在此基础上继续增大凹槽深度,对泄漏流的控制效果已不明显。凹槽结构能够降低叶顶表面的平均换热系数,随着凹槽深度增加,叶顶平均换热系数减小。在凹槽深度比为5%时,凹槽叶顶、吸力侧及底部存在最大换热系数,会对叶片性能造成一定影响。
其他文献
电磁感应式能量传输(Inductive Power Transfer,IPT)技术具有灵活、便捷和易于实现自动化充电的优点,可从能量供给上保证自动导引运输车(Automated Guided Vehicle,AGV)的全天候自动运行,对充分发挥AGV的优势具有重要意义。而非接触单管谐振变换器具有成本低,结构简单的优势,是中小功率AGV用IPT系统的优选方案。为了解决非接触单管谐振变换器存在的技术问
学位
近年来,无线电能传输(Wireless Power Transfer,WPT)技术凭借其安全、便捷的优势迅速发展,其中磁谐振式(Magnetically Coupled Resonant,MCR)因其在中距离场合具备大功率、高效率等优势,成为最具潜力的WPT技术之一。目前,MCR WPT系统多为“一对一”的单源/单负载系统,随着用电设备数量和输入源种类的日益增多,将无法满足实际使用需求。为此,本文
学位
连续旋转爆震发动机(Continuous Rotating Detonation Engine,CRDE)是一种基于爆震燃烧的新型动力装置,具有结构简单、比冲大、体积小、热释放率高等显著优势。连续旋转爆震发动机若采用液态航空煤油作燃料,点火起爆非常困难、混气形成质量差等问题。本文采用数值模拟及试验方法,开展了煤油/氧气预爆器起爆特性及煤油/空气旋转爆震燃烧室爆震燃烧特性的研究。主要研究结果如下:(
学位
齿轮箱是机械设备中用于传递动力的关键部分,对机械的稳定性有重要影响。齿轮与轴承是齿轮箱中的重要零件,在长时间工作于高速度、高负荷、强冲击的运转条件下,极易产生故障,一旦故障发生,将极大影响生产效率,甚至可能造成巨大的设备损失,因此对齿轮箱中的齿轮与轴承进行故障诊断研究对于保证生产安全具有重大意义。然而,现有的齿轮箱故障诊断方法大多以信号处理为基础,主要依靠人工提取故障特征,对捕捉原始信号中特征细节
学位
高超声速飞行器作为一种新型的飞行器,具有飞行速度快、机动能力强的特点,拥有重大的经济、军事意义。上升段作为飞行器任务执行的起始阶段,是后续各飞行阶段成功执行任务的基础,对飞行器飞行任务的成功起着至关重要的作用。而另一方面,传统的制导控制分回路设计的思路由于建立在频谱分离假设之上,当应用于高超声速飞行器时存在假设条件不能满足的风险,从而降低了飞行器机动性能,影响飞行器控制精度。因此,本文针对高超声速
学位
随着科学技术的发展,各种设备(如手机等通信设备)趋于小型、超薄化,以适应不同的工作环境。尽管设备的小型化会带来一系列的优点,但是同时也会引起一系列的缺点,如散热问题。热管作为一种相变潜热换热式高效散热器件,可以有效应对高热流密度问题。但是平板热管趋于超薄化时,内部机理是否会和普通平板热管相同,还有待进一步研究。本文在内腔长宽高为80mm×50mm×0.2mm超薄平板热管的结构基础上做研究,不考虑气
学位
为满足船用柴油机大功率、高效率、低能耗、轻排放等要求,高压共轨技术已成为现代船用柴油机的重要发展方向。高压油泵作为高压共轨系统中的核心单元,是柴油机安全稳定运行的动力保障。然而,由于高压油泵结构复杂且各机械部件频繁运动,导致磨损和卡滞等故障经常发生。这些故障不但会影响轨压的建立,降低柴油机的工作效率,更会对柴油机的安全稳定运行产生威胁。因此,准确诊断高压油泵工作状态对保证柴油机安全稳定运行具有重要
学位
航空发动机在追求高性能的道路上不断提升涡轮前温度,这将对热端部件材料的高温强度、抗腐蚀性及抗氧化性能等提出越来越严苛的要求。如果用具有耐温高、密度低、高温下强度高等优异性能的陶瓷基复合材料(Ceramic matrix composites,CMCs)取代高温合金,就能让热端部件在更高的温度环境下使用。CMCs在火焰筒上的应用需要解决CMC火焰筒的散热、铺层和连接等问题。本文首先设计了一种类椭圆斜
学位
近年来,四旋翼直升机逐渐普及,在航拍、飞行表演、农药喷洒以及军事打击上应用前景都十分广泛。然而,恶劣的飞行环境影响控制信号的传递,导致时滞出现甚至诱发故障;此外,长期高负荷的运转也是另一个导致故障频发的重要元素。针对目前故障频发的现象,研究高效的容错控制方法变得极为迫切。四旋翼直升机控制系统的复杂程度不断加大,外部干扰,时滞,多故障等问题都给容错控制技术带来了极大的挑战。针对上述问题,本文根据研究
学位
刷式密封是一种先进的柔性接触式密封技术,具有优良的密封性能和应用前景。目前,国内外对刷式密封的泄漏流动已经开展大量的试验和数值研究。刷式密封结构内还存在复杂的传热现象,刷束与转子间的滑动摩擦接触会产生可观的摩擦热,使刷丝自由端部温度升高,甚至达到刷丝材料的熔点,对其密封性能甚至使用寿命产生不利影响。可见,刷式密封的泄漏、传热特性(包括摩擦热)与密封性能及使用寿命密切相关,而且二者是相互耦合的,基于
学位