论文部分内容阅读
随着信息化科技的迅猛发展,作为一种集信息采集、通信和计算于一身的综合性平台,无线传感器网络(Wireless Sensor Networks,WSN)在家庭、医疗、工业和军事等领域得到了越来越广泛的应用。在实际应用中,多元化的监测任务和复杂的应用环境经常会使WSN节点发生移动,随之产生的关于移动WSN节点的定位问题已经成为国内外学者的研究热点之一。本文对WSN节点定位算法进行了分类研究,主要对蒙特卡洛移动节点定位算法(MCL)进行深入研究,针对MCL算法中定位精度不高、采样效率低下和低鲁棒性等缺陷,结合实际应用中面对不同的监测环境出现的不同问题,科学的提出了针对性的解决方法,进而得到更精准的定位信息。本论文的主要研究成果如下:(1)针对传感器节点的通信半径在实际应用中会由于节点的高度变化而发生变化这一现象,提出了一种结合跳距转换模型的蒙特卡洛定位改进算法(HDMCL),利用节点间的跳数信息和跳距转换模型得到一个精化的采样区域,取代了传统MCL算法利用通信半径确定的采样区域,HDMCL算法不仅解决了通信半径波动大的问题,而且在定位精度和采样效率上都有很大的提升。(2)考虑到锚节点的成本和功耗问题,针对低锚节点密度的WSN网络提出一种自主择优的蒙特卡洛定位算法(PWMCB),基于锚盒子信息,自主筛选出高精度的优质节点,用以辅助其他普通节点定位。结果显示该算法能大大提升节点的定位精度,提高网络的鲁棒性,并且在低锚节点密度的网络环境下优化效果更明显。(3)在PWMCB算法中优质节点坐标的计算阶段,利用节点运动的连贯性,引入节点前两个时刻的位置,提出MCMCB算法,赋予采样样本更科学的权值,使优质节点的坐标估计更精确,从而更好的辅助其他节点定位。(4)对HDMCL算法和PWMCB算法进行了仿真,并将仿真结果分别与MCL算法、MCB算法进行比较分析,验证了HDMCL算法和PWMCB算法的有效性和优越性。