论文部分内容阅读
设G=(K E)是简单图,是从VUE到{1,2,…,k>的一个映射,其中七是正整数.对任意z∈y,令C(z)={,(z)>u{,(∥)l∥∈V∥和z相邻>u{f(e)le∈E,e和z相关联>,称之为x在,下的色集合.若(i)对任意uv∈E,有,(u)≠,(v),(uv),(v)≠,(札u);(ii)对任意札u,u叫∈E,u≠叫,有,(uv)≠,(uw),则称,是G的一个七一正常全染色,简记作k-PTC.对一个k-PTC,如果有任意u,v∈V,u≠v,有C(u)≠C(v),则称,是图G的一个使用了尼种颜色的点强可区别全染色,简记为k-VSDTC.称)。t(G)=min{kI G存在k-VSDTC>为G的点强可区别全色数.本文利用组合分析法等多种方法讨论了星,扇,轮,双星,完全二部图,完全图,圈和路的点强可区别全染色,给出了星,扇,轮,双星以及某些完全二部图,完全图,圈以及路的点强可区别全色数.