论文部分内容阅读
现代工业过程对控制系统越来越高的要求促进了软测量技术的发展,作为解决现代复杂工业过程中较难甚至无法由硬件在线检测参量的实时估计问题的有效手段,软测量已经成为目前过程控制领域的研究热点之一,受到了国内外学者和生产企业的广泛关注。本文以实际工业过程为背景,结合化工过程的工艺知识,对软测量建模若干方法进行了深入的研究,并对软测量技术在实际工业过程中的应用进行了探讨和实践。本文的主要研究工作如下:1)提出了一种基于改进的FasBack模糊神经网络的新型软测量建模方法。改进方法采用收敛性较好的Levenberg-Marquardt算法训练FasBack模糊神经网络模型中的部分参数,其余参数仍然采用原BP算法进行训练。由于FasBack模糊神经网络既有神经网络的非线性拟合能力,又具有较强的分类能力,因此,既适用于多输入/单输出(MISO)情况下的软测量建模又适用于多输入/多输出(MOMO)情况下的软测量建模。将所提出的建模方法分别用于MISO情况下精对苯二甲酸(PTA)生产过程中的4-CBA含量软测量建模和MIMO情况下的复合肥养分含量:氮、五氧化二磷、氧化钾含量软测量建模,经实际工业过程数据验证表明,提出的MISO和MIMO软测量模型学习速度快、预测精度高、鲁棒性强,不仅为实现PTA生产过程中4-CBA含量的实时、精确控制提供了一条有效的途径,而且为MIMO软测量建模方法进行了一次有益的尝试。2)针对复合肥生产过程中产品的几种养分含量需要同时预报的一类多输入/多输出(MIMO)软测量建模问题,提出了一种基于混合建模技术的复合肥养分含量MIMO软测量建模方法。该方法充分利用了过程的工艺知识,将简化机理建模方法与数据驱动建模方法结合起来建立复合肥养分含量的MIMO软测量模型;同时,充分考虑了MIMO系统采集数据的严重相关性和大量冗余信息的存在,所以数据驱动建模方法选用了具有强大的处理相关和冗余信息能力的PLS算法;此外,在该算法中采用了一种新的方差递推算法,从而实现PLS模型的在线更新以克服模型在线应用时的老化现象。该算法充分利用了两种建模方法的优点,克服了其各自的局限性,基于实际工业过程数据的仿真结果表明,所建模型运算速度快、预测效果良好,模型预测结果与化验室分析结果趋势比较吻合,预测精度高,可以满足复合肥各养分含量在线预报要求。3)将基于混合建模方法的复合肥养分含量MIMO软测量模型应用于实际工业过程中复合肥养分:氮、五氧化二磷、氧化钾含量的实时估计,通过对数据采集、预处理、时序匹配、软测量建模以及在线校正环节的精心实施,实现了过程的实时监控,在复合肥生产中起了重要的指导作用。实际运行结果显示所采用的软测量方法不仅实现简单,而且运算速度快、模型预测结果与化验室分析结果趋势较为吻合,满足了复合肥各养分含量在线实时预报的要求。4)提出了一种基于混合建模技术的自适应软测量建模方法以解决软测量模型实际运行后的模型老化现象。该混合建模方法首先采用模糊C均值聚类(FCM)算法对训练样本进行聚类,并对每一类分别采用支持向量机进行训练建立子模型以提高模型的预测精度。当新增样本到来时,对支持向量机进行增量学习以便显著减少运算时间并提高模型适应工况变化的能力。由于支持向量机运算的复杂性取决于支持向量的个数,因此,当增加一个支持向量时,采用启发式策略去掉支持向量机工作集中的一个老的支持向量并进行减量学习,从而可以在软测量模型中不断增加能够代表新工况的信息样本的同时控制工作样本集的规模。将所提出的软测量建模方法用于对二甲苯(PX)吸附分离过程纯度的预测,仿真结果表明所提出的建模方法可以有效地增强软测量模型适应工况变化的能力,提高其预测精度。