【摘 要】
:
随着社会的发展,气敏传感器的应用范围越来越广,基于金属氧化物敏感材料的半导体气敏传感器存在选择性差、工作温度过高等缺陷,这严重限制了其实际应用,如何进一步提高气敏传感器的性能成为行业的研究热点。近些年,除稀土元素掺杂、贵金属修饰等改性方法外,通过不同材料复合构筑异质结构有望制备出低温或室温下高性能的敏感材料。二氧化锡和氧化锌是两种n型宽带隙半导体,一直是传感领域炙手可热的研究目标。SnS2是Ⅳ-Ⅵ
论文部分内容阅读
随着社会的发展,气敏传感器的应用范围越来越广,基于金属氧化物敏感材料的半导体气敏传感器存在选择性差、工作温度过高等缺陷,这严重限制了其实际应用,如何进一步提高气敏传感器的性能成为行业的研究热点。近些年,除稀土元素掺杂、贵金属修饰等改性方法外,通过不同材料复合构筑异质结构有望制备出低温或室温下高性能的敏感材料。二氧化锡和氧化锌是两种n型宽带隙半导体,一直是传感领域炙手可热的研究目标。SnS2是Ⅳ-Ⅵ族化合物,具有类石墨烯结构,电负性高,化学性质稳定,在气敏领域存在一定的发展潜力。因此,本文选用金属氧化物SnO2以及金属硫化物SnS2为研究主体,通过不同的制备方法、参数调控、结构复合进一步优化材料的形貌及分散特性,提升材料的吸附性,增强材料的导电性,以此来提高气敏元件的气敏性能。具体工作如下:(1)利用静电纺丝法,通过调控Sn和Zn源的摩尔比,制备出均匀分散的ZnO-SnO2空心纳米纤维,各项表征说明样品结晶性好,纯度高,复合材料显示n型半导体特征。在210℃下,基于Zn O-SnO2纳米管的传感器,对150ppm乙二醇的响应为47.71,响应恢复时间分别为55s和13s,重复性和长期稳定性好。研究发现粗糙多孔的空心结构有利于气体吸附扩散,异质结构有助于改善材料的导电性。(2)通过水热转换前驱体ZnSn(OH)6微球的方法构筑了SnS2-ZnS异质结构,其形貌表征说明样品是由纳米薄片组成的花状微球结构,XRD测试说明样品纯度高,结晶性好,在制备过程中没有引入任何杂质。对不同湿度下样品的气敏特性进行了详细研究,结果表明,在180℃时,与同批制备的纯的SnS2相比,SnS2-ZnS复合材料对三乙胺气体的气敏性能显著提高,响应恢复时间缩短到2s/8s,提高了约3倍。具有优良的选择性,而且在同一条件下表现出更强的抗湿性。优异的气敏性能主要因为异质结构的合成,改善了材料的导电性能,提高了载流子迁移率,增大了载流子浓度。SnS2-ZnS高度分散的花状结构为气体提供了更多的吸附位点,这是气敏性能提高的另一个重要原因。该合成路线也为设计具有快速响应恢复时间特性的金属硫化物敏感材料提供了研究思路。
其他文献
镁及其合金是下一代最有前途的合金材料,因其重量轻、刚度高、机械可加工性好被广泛应用于各个领域。然而,镁及其合金具有高的化学反应活性,并且它们在潮湿环境或含氯化物的侵蚀性介质中容易降解,这严重限制了它们的大规模使用。虽然传统的表面涂层处理技术能有效保护金属基底免受腐蚀,但其操作繁琐,会对环境造成危害。近年来,受自然界生物启发的超疏水涂层具有优异的拒水性能,操作简单高效,在镁合金表面构筑超疏水涂层能大
陕西苹果产量占全国的1/4和世界的1/7,苹果产业已成为陕西提升农业、富裕农民的重要支柱型产业。陕西苹果产区自然地理条件得天独厚,但容易受到各种自然灾害的影响,其中花期冻害对苹果产量影响最大,花期水分不足同样也会严重影响产量。为了增强陕西苹果产区精准防御花期冻害的能力和及时进行灌溉补水,有效提高苹果产量和品质,促进陕西苹果产业的可持续发展,对陕西苹果产区富士系苹果花期冻害和水分适宜度的进行深入研究
西北黄土高原沟壑区作为中国重要的优质苹果生产基地,由于多数果园管理措施不合理、盲目灌溉施肥,阻碍了该地区果品生产的发展,因此提高灌溉水生产力和果业产值、解决因不合理施肥导致的环境污染等问题,是该地区果业可持续发展的根本前提和重要保证。滴灌施肥是提升水肥利用效率,发展节水农业的一种主要技术手段。不同滴灌施肥技术参数通过影响水肥供应和分布而影响果树生长,间接导致产量和果品的差异。因此,研究滴灌条件下不
黄土高原水土流失严重,生态环境问题突出,苹果种植作为当地退耕还林(草)主要引导产业,促进了当地经济发展。但是,由于该地区年际降水量较少且分布不均、不合理的果园管理措施以及大量的施肥导致当地苹果园土壤水环境状况逐渐恶化和土壤炭库含量降低,加速了土壤碳排放速率,增加了温室气体排放量,进而导致一系列环境问题。为了实现“碳达峰、碳中和”的国家战略目标,应对全球气候变化,切实增加黄土高原地区生态碳汇,争取实
镍钴基铁氧体具有与一般磁性材料不同的铁氧体磁性材料,它作为尖晶石结构的铁氧体纳米磁性材料,具有十分独特物理化学性质,尤其是机械性能、电学性能、磁学和光磁性能。特别是以矫顽力、磁化强度、磁晶各向异性常数为代表的磁学性能。镍钴基铁氧体纳米磁性材料较高的矫顽力、较大的高频磁导率和磁晶各向异性常数,以及优异的化学性与耐腐蚀性使得样品广泛的应用在不同的领域:例如磁记录材料、永磁体、吸波材料和气敏传感材料方面
黄土高原是世界上最大的优质苹果主产区,种植面积和总产量居世界第一,苹果作为一种兼具良好生态服务功能和经济效益的特色经济林在黄土高原得到了迅猛发展,因此黄土高原苹果园具有巨大的生态系统服务效益。但是农业生产和调节服务经常处于矛盾之中,苹果园在确保最大生产力的同时应适当考虑环境和自然资源,如何权衡其生态系统服务是苹果园可持续发展面临的重要问题之一。针对以上问题,本研究以黄土高原不同管理措施的苹果园为研
黄土丘陵区苹果产业在退耕还林(草)工程实施以后,现在已发展成为当地的主要经济产业之一,但是黄土丘陵区土壤结构易被破坏,土壤质量下降,且该地区不均衡降水的气候条件和清耕管理的人为因素条件导致苹果园土壤水分亏缺,在一定程度上制约了苹果产业的可持续发展。施加外源改良剂不仅可以改善土壤结构还可以改善土壤水分状况和土壤养分含量,但是已有生物炭、植物根际促生菌和保水剂改良剂的研究多为田间试验和室内培养试验,对
陕北黄土高原是世界苹果的优生区之一,但该地区降雨量小且在苹果生育期中雨水分配不平衡,导致水分不能满足苹果树在生育期特定阶段的需求,最终影响果树的产量品质。本文以8年生寒富苹果树为研究对象,试验设3种滴灌方式;分别为分根交替滴灌(ADI)、单管滴灌(UDI)和双管滴灌(BDI),及3个灌水梯度;分别为高水(W1)、中水(W2)和低水(W3),本试验为正交试验设计,共有9处理,每个处理重复三次。研究滴
黄土高原地区是全球最大的苹果连片种植区,苹果种植已经成为当地经济发展的重要支柱产业,但该地区果园管理模式不科学,加之降水稀少,果树生长耗水强烈,导致当地旱作果园深层土壤水分亏缺严重,严重影响了果园的持续稳定发展。本研究在黄土高原地区依据降水梯度自南向北选取不同研究区域(扶风、长武、洛川、延安、子长、米脂),围绕研究区内苹果园水分生产力和土壤水分变化,在实地调查和定点检测的基础上,结合基于Windo
黄土高原地区种植的苹果品种大部分为富士系,富士系苹果对水分的需求较高。所以研究苹果果树的蒸腾对于苹果树生长发育和产量品质至关重要,目前测量果树的蒸腾的方法是茎流计测定法,但该方法设备较昂贵且会对果树树干造成伤害。因此,需要寻找一种新的方法研究富士苹果的蒸腾耗水,在不破坏树体的情况下还可以精确模拟苹果树的水分生理生态过程,为黄土高原地区苹果种植提供科学指导。本文以中国陕西延安市宝塔区庙沟村果园为试验