论文部分内容阅读
制冷热泵系统中由于压缩机需要润滑,润滑油会不可避免地进入到整个系统,润滑油与制冷剂混合会影响系统的传热,因此需要对含油的制冷剂换热情况进行研究。本文以新型三元混合工质R447A(质量组分68%R32/28.5%R1234ze(E)/3.5%R125)为目标工质,研究POE类润滑油对三元非共沸工质传热特性的影响。通过开展润滑油与制冷剂的相分离研究、含油的混合物粘度特性研究、含油制冷剂核态池沸腾研究及含油工质水平管管内流动沸腾换热研究,探究润滑油对工质换热的影响,并进行机理解释。
(1)进行了R447A/润滑油混合物物性研究。通过相分离实验,得到了R447A/润滑油混合物相分离曲线。实验结果表明在不同的油浓度情况下R447A与润滑油溶解或分离是变化的。在低油浓度时,润滑油与制冷剂相互溶解,随着油浓度上升,R447A与润滑油发生相分离,油浓度继续增大,R447A与润滑油再次发生相溶解。通过粘度实验测试发现润滑油粘度是制冷剂的10~20倍,随着油浓度提高,混合物粘度也随之增长。采用非线性物性计算方法对混合物物性进行计算,为沸腾传热研究提供物性数据。
(2)开展了R447A/润滑油混合物池沸腾换热研究。通过测试R447A/润滑油传热特性及池沸腾现象的观测,发现随着油浓度的增加,更易产生气化核心,液体过热度降低,液体发泡密度增强,气泡体积变小,传热系数相比不含油工质得到提高,但由于润滑油的加入,粘性阻力以及表面力增强,气泡上升速度减缓而且不易合并。基于非均匀成核理论和吉布斯自由能,对池沸腾发泡进行理论研究,研究表明,随着气泡接触角增大,胚泡临界半径减小,气泡生长所需有效能也降低。油浓度上升表面润湿性增强,气泡接触角增大,有利于发泡进行。与实验观察到的发泡现象一致。
(3)为了与含润滑油工质流动沸腾换热比较,进行了不含油工质水平管管内流动沸腾研究。研究表明纯工质传热系数高于混合工质,R32传热系数高于R1234ze(E),两组R32/R1234ze(E)二元混合工质与R447A传热系数相近,混合物传热系数低于纯工质,主要原因是后者的传热过程产生传质阻力。为了更好的预测三元混合物的流动沸腾换热,提出了考虑传质影响的无量纲修正因子1/Rt应用到传热系数预测模型中,改进的模型对无油混合工质实验数据及文献数据的预测误差小于20%。该模型修正物性后对含油R447A水平管流动沸腾换热系数的预测平均绝对误差19.98%。
(4)对R447A/润滑油混合物流动沸腾换热过程的流体流型进行了观察,发现油的加入加速了由间歇流向环状流的转变,可促进流体换热。与不含油工质流型相比,含油工质环状流的液相区夹带大量气泡,局部油浓度升高,对流蒸发受到抑制。根据实验结果获得了油强化因子,并引入不含油三元混合物的传热系数预测模型中,对含油R447A传热系数的预测精度可达20.4%。基于熵产理论,对含油制冷剂混合物流动沸腾压降以及传热造成的熵产进行推导和量化,结果表明随着质量流速的增加,油对压降的熵产贡献可以抵消油对传热系数的积极影响。从传热熵产角度推荐1%的油浓度。
(5)含油R447A混合物水平管管内流动沸腾换热研究结果表明润滑油可以提高流体传热系数,特别是以核态沸腾为主的低干度区。但在高干度时,传热系数反而降低。润滑油对R447A流动沸腾换热的影响可以总结为三个阶段:
低干度时,POE润滑油与制冷剂互溶,润滑油的亲水基团能够增强传热表面润湿性,润滑油活性物质和添加剂能够增加气化核心,提高发泡效率,促进核态沸腾换热。润滑油使工作液表面张力增大、润湿性增强,加速了环状流形成而未出现相同干度下不含油时的分层流,环状流使液膜变薄,有利于换热。
随着干度的增加,混合物的局部油浓度提高,制冷剂与润滑油发生相分离,分离出的部分润滑油会附着于传热表面成为热阻,溶于制冷剂的润滑油使液相工质表面力、粘度进一步增大,使得制冷剂气泡体积变小,而且气液界面处高表面力的含油液相阻碍了气泡的聚合,也增加了对流蒸发气液界面的蒸发阻力,不利于对流蒸发换热,但蒸汽加速作用和润滑油的发泡仍起到积极的作用,含油R447A的传热系数随着干度的增加而增长,但比无油R447A的增长趋势要慢很多。
高干度时,混合物液相局部润滑油比例急速上升,而且油与制冷剂再次相溶,混合物液相粘度、表面张力快速提高,核态沸腾受到抑制,气泡在液膜层中流动,不易与主流气相汇合,此时对流蒸发换热气液界面的油浓度梯度区增大,产生的质扩散阻力增强,对流蒸发换热受到抑制,流体传热特性降低。
(1)进行了R447A/润滑油混合物物性研究。通过相分离实验,得到了R447A/润滑油混合物相分离曲线。实验结果表明在不同的油浓度情况下R447A与润滑油溶解或分离是变化的。在低油浓度时,润滑油与制冷剂相互溶解,随着油浓度上升,R447A与润滑油发生相分离,油浓度继续增大,R447A与润滑油再次发生相溶解。通过粘度实验测试发现润滑油粘度是制冷剂的10~20倍,随着油浓度提高,混合物粘度也随之增长。采用非线性物性计算方法对混合物物性进行计算,为沸腾传热研究提供物性数据。
(2)开展了R447A/润滑油混合物池沸腾换热研究。通过测试R447A/润滑油传热特性及池沸腾现象的观测,发现随着油浓度的增加,更易产生气化核心,液体过热度降低,液体发泡密度增强,气泡体积变小,传热系数相比不含油工质得到提高,但由于润滑油的加入,粘性阻力以及表面力增强,气泡上升速度减缓而且不易合并。基于非均匀成核理论和吉布斯自由能,对池沸腾发泡进行理论研究,研究表明,随着气泡接触角增大,胚泡临界半径减小,气泡生长所需有效能也降低。油浓度上升表面润湿性增强,气泡接触角增大,有利于发泡进行。与实验观察到的发泡现象一致。
(3)为了与含润滑油工质流动沸腾换热比较,进行了不含油工质水平管管内流动沸腾研究。研究表明纯工质传热系数高于混合工质,R32传热系数高于R1234ze(E),两组R32/R1234ze(E)二元混合工质与R447A传热系数相近,混合物传热系数低于纯工质,主要原因是后者的传热过程产生传质阻力。为了更好的预测三元混合物的流动沸腾换热,提出了考虑传质影响的无量纲修正因子1/Rt应用到传热系数预测模型中,改进的模型对无油混合工质实验数据及文献数据的预测误差小于20%。该模型修正物性后对含油R447A水平管流动沸腾换热系数的预测平均绝对误差19.98%。
(4)对R447A/润滑油混合物流动沸腾换热过程的流体流型进行了观察,发现油的加入加速了由间歇流向环状流的转变,可促进流体换热。与不含油工质流型相比,含油工质环状流的液相区夹带大量气泡,局部油浓度升高,对流蒸发受到抑制。根据实验结果获得了油强化因子,并引入不含油三元混合物的传热系数预测模型中,对含油R447A传热系数的预测精度可达20.4%。基于熵产理论,对含油制冷剂混合物流动沸腾压降以及传热造成的熵产进行推导和量化,结果表明随着质量流速的增加,油对压降的熵产贡献可以抵消油对传热系数的积极影响。从传热熵产角度推荐1%的油浓度。
(5)含油R447A混合物水平管管内流动沸腾换热研究结果表明润滑油可以提高流体传热系数,特别是以核态沸腾为主的低干度区。但在高干度时,传热系数反而降低。润滑油对R447A流动沸腾换热的影响可以总结为三个阶段:
低干度时,POE润滑油与制冷剂互溶,润滑油的亲水基团能够增强传热表面润湿性,润滑油活性物质和添加剂能够增加气化核心,提高发泡效率,促进核态沸腾换热。润滑油使工作液表面张力增大、润湿性增强,加速了环状流形成而未出现相同干度下不含油时的分层流,环状流使液膜变薄,有利于换热。
随着干度的增加,混合物的局部油浓度提高,制冷剂与润滑油发生相分离,分离出的部分润滑油会附着于传热表面成为热阻,溶于制冷剂的润滑油使液相工质表面力、粘度进一步增大,使得制冷剂气泡体积变小,而且气液界面处高表面力的含油液相阻碍了气泡的聚合,也增加了对流蒸发气液界面的蒸发阻力,不利于对流蒸发换热,但蒸汽加速作用和润滑油的发泡仍起到积极的作用,含油R447A的传热系数随着干度的增加而增长,但比无油R447A的增长趋势要慢很多。
高干度时,混合物液相局部润滑油比例急速上升,而且油与制冷剂再次相溶,混合物液相粘度、表面张力快速提高,核态沸腾受到抑制,气泡在液膜层中流动,不易与主流气相汇合,此时对流蒸发换热气液界面的油浓度梯度区增大,产生的质扩散阻力增强,对流蒸发换热受到抑制,流体传热特性降低。