论文部分内容阅读
由于信息时代对信息的需求呈爆炸式增长,特别是因特网对全社会信息需求的推动作用,信息网内信息传送量的增长速度远远超过了“摩尔定律”。在市场需求的推动下,光通信因为带宽大、可靠性高、成本低、抗干扰能力强等特点,向高速、大容量方向取得了飞速的发展。目前基于电的时分复用光传输商用系统已从45Mb/s增加到40Gb/s,并正在向超高速系统(>40Gb/s)发展。在时分复用光通信技术中,核心的研究内容是实现高速电信号对光载波调制的高速光调制器的研制以及系统接收机中高速光探测器的研究。作为当前国际上主流的研究对象,半导体电吸收光调制器具有体积小,功耗低,可与半导体激光器集成等优点,因此,为适合下一代数字光通信系统的需要,当数据传输速率高达40Gb/s以上时,多选用激光—电吸收调制器集成器件作为光发射机的核心。在另一方面,MSM光探测器因其制作容易、低暗电流、大带宽灵敏度积,以及易于与电路芯片集成等特点,已成为高速光通信接收器中的重要元件。本文主要在理论上研究、优化设计并测试了高速半导体电吸收光调制器。光调制器的-3dB带宽达到100GHz;调制器的微波反射参数S11在0~60GHz频率范围内始终低于-12dB;当信号传输速度为50Gb/s、驱动电压的峰峰值Vp-p为3V时,电吸收光调制器的动态消光比达到了10.7dB。调制器优异的性能基于以下设计:针对调制器的高消光比和低驱动电压要求,优化设计了对1550nm波长光波段具有高电吸收系数的InGaAsP/InGaAsP多量子阱材料;针对调制器的高消光比和低插入损耗要求,优化设计了调制器光波导结构,实现了调制器光限制因子的提高以及器件与单模光纤之间光耦合效率的改善;提出并优化设计了光调制器分段式行波电极结构,同时实现了器件工作带宽的提高和器件与微波信号源阻抗匹配性能的改善。基于高速半导体电吸收光调制器,我们首次提出并完成了传输速度为80Gb/s的电时分复用光发射机的研究和实验;通过对理论和实验结果的分析,我们研究了温度对高速电吸收光调制器工作状态的影响,提出并实验验证了可通过优化驱动电压的方法来实现非冷却下高速光调制器在大温度范围内的正常工作。利用高速半导体电吸收调制器可以同时实现光电-电光转换的优点,我们将非对称法布里—珀罗型电吸收光调制器模块作为光收发器应用在全双工光纤无线系统中,提出并实验验证了上下行链路共用一个波长光载波的系统方案;通过对系统传递函数的非线性分析,模拟了系统的动态范围特性,并结合模拟结果在实验中通过优化运行参数对系统内副载波信号的互调失真进行了抑制。此外,本文也对Si基MSM光探测器的模拟设计方法进行了研究。基于半导体物理的基本微分方程,采用有限差分方法对Si基MSM光探测器进行了二维分析,模拟了器件中载流子的二维分布以及探测器的光电直流特性和瞬态响应特性;以对探测器瞬态响应分析得到的结论为基础,开展了针对探测器响应时间与响应率的二维结构分析,得到了优化的Si基MSM光探测器结构。