磁性聚胺基微球的制备及在固定化酶中的应用

被引量 : 8次 | 上传用户:johnathan126
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
磁性高分子微球既具有普通高分子微球单分散性好、易于制备和功能化等优点,还具有磁响应性,能在外加磁场的作用下方便地回收,已成为近年来研究最为热门的课题之一。聚乙烯亚胺(PEI)是胺基含量最高的水溶性阳离子聚合物,已被广泛用于生物工程、固定化酶、环境治理、基因治疗等领域。本课题主要研究内容如下:1.采用不同方法对Fe3O4纳米颗粒进行疏水性修饰。结果发现,硅烷偶联剂-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)、硬脂酸钠、双十二烷基二甲基氯化铵(di-C12DMAC)表面改性的
其他文献
近年来,随着纳米技术的快速发展,在溶液体系中通过自下而上的合成技术可以在纳米水平上有效控制固体催化剂颗粒的组成、形貌以及尺寸。大量的研究证明纳米材料的催化性能很大程度上取决于材料的形貌、尺寸。而这种影响对于选择性暴露材料的活性晶面更为显著。通过对多相催化纳米材料的形貌可控合成,选择性的暴露活性晶面,从而显著提高材料催化活性、稳定性以及选择性,这是当前多相催化纳米材料的研究热点之一。α-Fe2O是自
学位
试验于2012-2013年在扬州大学试验田和土培池进行,以两优培九和武运粳24为供试材料,设O.150.225.300kg/hm24种施氮水平,分析拔节期、抽穗期、成熟期冠层光谱特征及其2个品种间的差异,比较不同生育期叶片含氮率及产量、品质与各种高光谱特征参数的关系,并建立相应的优化预测模型,为水稻氮素营养和产量、品质诊断提供依据。结果表明:(1)2个水稻品种不同氮肥处理下不同生育期冠层光谱表现出
学位
将环糊精化学与分子印迹技术结合应用于氨基酸外消旋体的手性拆分,有十分重要的理论和现实意义。环糊精及其衍生物具有一个环外亲水、环内疏水的立体手性空腔,在分子识别、模拟酶,以及食品、医药、化工等众多领域广泛应用。但是环糊精及其衍生物分子识别的特异选择性有限,而分子印迹聚合物兼备生物识别体系和化学识别体系的优点,期望两者的结合可以使印迹聚合物对氨基酸分子的手性选择性进一步提高。本论文查阅了大量有关环糊精
学位
多金属氧酸盐发展已有两百多年的历史,因其特有的结构和独特的性质,所以在抗艾滋病病毒的无机药物、放射性废物处理、导电聚合物或绝缘体及溶胶凝胶掺杂、材料、催化、药物等多个领域具有潜在的应用前景[1-2],因此备受人们关注。有机金属配合物修饰的多金属钼酸盐已经显示出广阔、深远的应用前景。到目前为止,报道过的Mo-Sb帽Keggin型结构多金属钼酸盐还特别少见,因此杂多钼酸盐的研究,尤其是对锑帽修饰的杂多
学位
本论文在水热条件下合成了基于4-[二(羧甲基)氨甲基]联苯基-2-甲酸(H3L)配体和不同含氮配体的十种配位聚合物:[Co3(L)2(H2O)3]·2H2O (1)、[Zn3(L)2(H2O)3]·2H2O (2)、[Co3(L)2(4,4-bipy)2(H2O)4](3)、[Ni3(L)2(pbib)3(H2O)2]·4H2O (4)、[Co3(L)2(bbtz)2(H2O)6]·2H2O (5
学位
核壳结构微球是一种具有特殊结构和性能的新型复合功能材料。它是由一种纳米材料通过物理或化学作用力将另一种微/纳米材料包覆起来而形成的一种高层次的复合结构材料。由于这种特殊结构可以集两种或多种材料的优点于一体,因而它可作为功能材料并被应用于不同领域。SiO2@Cu核壳结构微球表面包覆的是Cu纳米颗粒膜。Cu纳米材料的电、磁、光、力学、热力学和化学性能等异于传统块体材料,表现出许多独特的性质。因此可用于
学位
氧连接的氮乙酰葡萄糖胺修饰(O-GlcNAc),是一种在真核细胞中普遍存在的蛋白质翻译后修饰,它是在1984年由Torres和Hart发现的。O-GlcNAc修饰是通过OGT和OGA这一对酶来实现的,OGT的作用是将N-乙酰葡萄糖胺(GlcNAc)通过β-构型O-连接的糖苷键形式连接到目的蛋白的丝氨酸(Ser)或苏氨酸(Thr)的羟基上;而OGA的作用则是去除GlcNAc修饰。目前,已经发现超过3
学位
量子化学与分子动力学模拟作为分子模拟的两个重要方面,各有优点,互为补充。本文通过对二元苯酚的烷基化反应密度泛函(DFT)研究和聚乙烯基吡咯烷酮(PVP)的分子动力学模拟两个方面,分别向大家展示了量子化学和分子动力学的这两种分子模拟特色方法。实验室以邻苯二酚与N-羟甲基丙烯酰胺的烷基化反应来合成辣素衍生物,实验发现,改变初始反应物二元苯酚与N-羟甲基丙烯酰胺的摩尔比分别为1:1、5:1、10:1时,
学位
聚乳酸被认为是21世纪最有前途、最具竞争力的生物降解高分子材料。但是聚乳酸作为线性脂肪族聚酯,其本身在热性能等方面存在一定的缺陷,且其降解周期较长,因此极大地限制其在组织支架等方面的应用。将含有芳香环的链段引入到聚乳酸链中,期望提高聚乳酸共聚物材料的热性能,同时加快其降解速度。本文基于生物基单体丙交酯(LA)和3,4-二羟基苯丙氨酸(DOPA),通过适当的结构设计、采用不同的制备方法,合成了两种具
学位
随着社会科学的日益更新与发展,人类对新生能源的需求也在日益扩大。而且随着近几年来环境的污染越来越严重,以往的化石能源对环境的破坏也逐渐日益凸显出来,开发并且如何合理利用新生无污染能源是摆在人们面前的另一大难题。以太阳能为代表的新能源,对其利用研究的积极开展已成为新能源领域的显著特点。半导体光活性材料有着自身独特的优点和性质,如光化学稳定性和抗化学腐蚀性,而逐渐被大家所熟知从而在光催化领域占有重要的
学位