【摘 要】
:
自由基聚合反应是人类开发最早,研究最为深入的一种聚合反应,在高分子化学中占有重要地位。但是在传统的自由基聚合反应中,反应一旦开始,反应过程就无法控制,反应产物也无法控制。同时,在自由基聚合反应的研究中,人们常用过渡金属或者是有机染料作为催化剂进行反应。但是不论是过渡金属还是有机染料都不利于绿色环保的化工生产主题。所以,如何在绿色环保的情况下实现对自由基聚合反应的有效控制便成为研究的热门。光能作为一
论文部分内容阅读
自由基聚合反应是人类开发最早,研究最为深入的一种聚合反应,在高分子化学中占有重要地位。但是在传统的自由基聚合反应中,反应一旦开始,反应过程就无法控制,反应产物也无法控制。同时,在自由基聚合反应的研究中,人们常用过渡金属或者是有机染料作为催化剂进行反应。但是不论是过渡金属还是有机染料都不利于绿色环保的化工生产主题。所以,如何在绿色环保的情况下实现对自由基聚合反应的有效控制便成为研究的热门。光能作为一种可再生资源,在生物和非生物体内都有非常广泛的利用价值。将光作为控制自由基聚合的反应条件,通过调节光来控制反应,从而实现反应产物的预设计及过程控制。众所周知,将太阳能应用于包括催化在内的工业生产是我们做科研研究的理想追求。本论文从分子组装的思路出发,通过不同的组装方式构筑了两种不同的催化剂,探究了以光照作为开关来进行控制的光催化反应,具体的研究结果如下:1.利用短肽对卟啉进行修饰,构建了卟啉与脂肪族二肽结合的功能杂化体,并通过调控溶剂比例诱导其组装,形成一种尺寸可控的粗糙球状结构。卟啉的光敏特性是通过将氨基酸衍生物(或短肽)与卟啉结合形成卟啉类衍生物并自组装成结构稳定的组装体展现的。同时,我们对短肽-卟啉的组装体用于固定葡萄糖氧化酶并且能够提高酶的催化活性机理进行了研究。卟啉类物质具有光致电子转移能力,可以将光激发下产生的光电子转移到葡萄糖氧化酶上,使葡萄糖氧化酶能够更好的催化自由基聚合反应,从而提高了酶催化RAFT自由基聚合反应的能力。2.受天然酶成分组成的启发,选用光敏剂四苯基卟啉(TPP)和牛血清白蛋白(BSA)作为组装构筑基元,制备了TPP-BSA等一系列尺寸和形状可控的共组装材料仿生酶。研究了它们的催化活性、循环催化能力及温度和金属离子Mn2+的加入对材料催化活性的影响。通过研究发现,共组装体TPP-BSA的系列材料具有较好的催化活性并且具有多次循环的能力;对材料进行60℃加温处理后,材料的催化性能有了明显的增强;进一步加入金属离子Mn2+后,材料的催化活性有了进一步的提升并且在进行4次循环催化后仍具有较强的催化活性。
其他文献
土壤侵蚀是全球最主要的生态环境问题之一,其生态破坏后果严重,同时制约着社会和经济的快速发展。滇池作为云南省境内第一大淡水湖,流域内水土流失问题严重,受到各界的广泛关注,解决水土流失问题,恢复当地生态环境已成当务之急。从小流域尺度上探究不同土地利用类型下的土壤侵蚀及养分流失特征,能够为当地土地利用变化对滇池流域面源污染及土地退化的影响研究提供可靠的参考依据,对减缓生态压力、改善生态环境、评价退耕还林
中生代华南陆块向华北陆块俯冲碰撞形成了大别-苏鲁造山带,该碰撞造山过程对于认识陆-陆碰撞过程具有重要意义,但其具体的陆-陆碰撞过程尚未达成统一认识。前人认为徐淮弧形褶皱冲断带的构造演化过程与大别-苏鲁造山带造山作用存在动力学联系。徐淮弧形带受多期构造事件的影响,构造样式较为复杂,其中生代构造变形特征仍未达成统一认识,逆冲变形时间尚未精确限定。本文拟厘定徐淮弧形褶皱冲断带的构造变形特征与隆升时间,探
磁力光整加工技术是将磁场和磁性磨料与传统研磨技术复合而形成的一种先进的光整加工工艺,因其具有的柔性、自适应性、自锐性、设备简单等诸多优点被广泛地应用于航空航天、医疗器械、现代工业等领域。铜基合金材料作为导电性、导热性和力学性能优良的结构材料在该领域中有着广泛的应用。随着现代工业水平的不断提高,对服役于该领域中的铜基合金材料构件的表面质量和使用性能提出了越来越高的要求。磁力光整加工技术是提高产品表面
改变喷油参数是实现减少发动机排放和提高发动机经济性的有效措施之一。本文研究ZL160船用高速柴油机不同的喷油参数对柴油机燃烧性、排放性以及经济性的影响。本研究在淄柴动力有限公司实验室发动机台架上进行实验,利用真实采集的实验数据,进行分析研究。应用一次回归正交实验设计方法,分别安排喷油压力、喷油提前角、喷孔数目以及喷孔直径做实验,并得到相对较为理想的实验数据优化组合。基于三维仿真软件CFD中的Flu
超级电容器是一种具有高效、新模式和生态友好特性的电容器,因其出色的功率密度、优异的充放电性能、长的使用寿命、范围广的工作温度等优点,而被广泛的应用于各个领域。电极材料是影响超级电容器性能的主要因素之一。为了得到性能更优异的超级电容器,研究者们对电极材料进行了广泛的研究。金属有机骨架(MOFs)具有可调节的孔隙,多样的结构和高的比表面积,因此它被认为是超级电容器领域中极具前景的电极材料之一。其中,M
国产联合收获机经过多年发展,收获机性能有明显的提高,但仍存在自动化水平相对较低、传动系统设计不合理等问题,针对此现状,本研究通过构建试验台、设计功率采集系统、开展功率采集试验等工作,提出了适用于YF8166玉米籽粒联合收获机脱粒滚筒、清选风机和切碎器部件传动系统的优化方案。本文的主要研究内容和结论包括以下几点:(1)以YF8166型玉米籽粒联合收获机为参考,构建了可模拟田间作业过程的多功能籽粒联合
船用高速柴油机的压缩比与进气参数的选择是否合理,对船机的各项性能来说十分重要。合理的调整压缩比对整机性能的提升有较大作用,不仅能提高热效率,优化动力经济性,也能提升燃烧等容度,适当提高缸内压力以及最高压力升高率,减少气缸内热量损失,同时还有助于提高内燃机运转的稳定性并保持较好的冷起动能力;而气门升程曲线以及配气定时(配气相位)是配气机构中十分重要的两个进气参数,也能够决定船机换气功能的好坏,进一步
自主导航技术是移动机器人应用的核心和焦点之一,主要包括建图、定位、感知和路径规划等,路径规划是其中的关键技术。局部路径规划由于障碍信息未知和机器人所配置传感器感知环境有限,通常存在局部死锁和路径冗余的问题,难以快速规划出安全、平滑的最短路径。针对上述问题,本文基于多种智能控制方法,研究移动机器人如何自主、高效地完成局部路径规划任务。针对移动机器人局部路径规划任务和规划效率的问题,对基于模糊控制和长
电力网作为必不可少的基础设施,其对于一个国家正常运作与居民正常生活是不可或缺的一部分,因此,保证电力网运行的经济性与供电的可靠性是必不可少的。近年来,随着智能电网的快速发展,电力系统信息层与物理层的交互也变得尤为频繁,其典型特征已经与电力信息物理融合系统(Cyber Physical System,CPS)极为相似。由于电力CPS信息侧的自身缺陷,使得其成为针对电力系统网络攻击的突破口,电力系统遭
白藜芦醇,是一种非黄酮类多酚有机化合物,具有预防肿瘤、神经保护、自身免疫调控、抗哮喘、抗糖尿病等作用,有广泛的市场前景。目前白藜芦醇的主要来源是从虎杖和葡萄等植物中提取得到,然而天然植物中提取的白藜芦醇存在含量低、提取困难等问题,已经不能满足人们对它的需求,寻找其替代来源迫在眉睫。目前生物工程技术是解决白藜芦醇缺乏问题比较理想的途径,大肠杆菌、酿酒酵母等模式生物均被用作底盘生物合成白藜芦醇,但依然