论文部分内容阅读
本文以数学机械化思想和AC=BD模式为指导,研究具有任意阶非线性项的非线性偏微分方程的精确求解,微分差分方程的群分类和超对称方程的群不变解的分类问题.第一章介绍数学机械化、孤立子理论、数学物理方程的精确求解、对称分析、群分类、超对称和超对称方程的历史发展和研究现状,并介绍本文的选题及主要工作.第二章介绍微分方程变换的机械化构造的AC=BD理论和C-D对理论的基本内容和思想.第三章基于将非线性发展方程精确求解代数化、算法化、机械化的指导思想和AC=BD理论,改进广义Riccati方程有理展开法,并推广Sub-ODE方法,进而给出带有任意阶非线性项的非线性发展方程更多的精确解.第四章利用Zhdanov和Lahno给出的求解偏微分方程群分类的方法研究非线性微分差分方程(?)n=Fn(t,un-1,un,un+1)在李代数下不变的群分类.第五章给出超对称二玻色子方程的李超代数的伴随表示关系及其在这种关系下一维子代数的共轭类,进一步计算群不变解的初步分类,并得到超对称二玻色子方程的指数函数解、三角函数解和有理解.