锰改性γ-Fe2O3涂层的制备及光辅助Fenton降解性能研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:youare2b2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Fenton氧化技术是目前常用的降解废水中的有机污染物的处理方法,具有绿色环保、降解高效的优点。传统均相Fenton反应因其适用p H范围窄以及降解后溶液会产生铁泥的原因在实际使用中收到限制,而目前常用的异相Fenton催化剂多是粉体,需要通过过滤或离心从反应液中回收才能重复使用,且在p H在中性条件下催化活差。因此制备催化活性高、p H应用范围广、循环稳定性好的固定化的Fenton催化剂很有必要。本论文利用微弧氧化技术在钛合金表面制备了γ-Fe2O3催化剂,来改善粉末催化剂回收利用困难的缺点;利用液相掺杂的方式,对γ-Fe2O3催化剂进行锰改性,使催化剂的催化活性和p H应用范围进一步提升。对涂层的表面形貌和组成进行表征和研究,利用光Fenton体系进一步提升催化剂的催化活性和可重复使用性,通过降解苯酚研究所制备涂层的光Fenton催化活性。制备的铁氧化物涂层的主要由γ-Fe2O3和非晶态的Si O2组成,因为表面复杂的孔洞结构具有更大比表面积,可以为催化反应提供更多潜在的活性中心。铁源浓度为20 g/L,微弧氧化反应15 min制备的催化剂的光Fenton性能最好,可以在90min内将97.1%的35 ppm的苯酚降解,循环降解第六次时120 min可以降解77%的苯酚,γ-Fe2O3催化剂仅在酸性是具有降解活性。锰改性后的γ-Fe2O3催化剂的的催化活性和适用p H范围都有了显著的提升。涂层的主要成分是γ-Fe2O3、Mn3O4、Ti O2和非晶态的Si O2,锰源浓度为6 g/L、微弧氧化反应20 min制备催化剂的光Fenton性能最好,可以在10 min将96.8%的苯酚降解,循环降解六次仍然可以在40 min内将99.1%的苯酚降解;改性后涂层中Mn3O4可以在催化剂表面形成酸性位点,因此催化剂在中性和弱碱性下仍然具有有效的催化活性。催化剂的光Fenton降解性能要明显强于普通Fenton降解,因为光Fenton降解可以产生更多的·OH。γ-Fe2O3被光激发生成电子和空穴,电子和空穴与水和H2O2反应生成·OH,γ-Fe2O3也会直接与H2O2反应产生·OH;锰改性催化剂因为铁离子和锰离子形成了双离子协同效应所以·OH的生成速率进一步提升。自由基清除剂的加入证明了·OH和空穴在光Fenton降解过程中起着重要的作用。
其他文献
高氯酸铵是固体推进剂中的氧化剂,同时也是推进剂中含量最多的高能组分。高氯酸铵的热分解性能对固体推进剂的燃烧特性影响极大,采用燃速催化剂改善高氯酸铵的热分解性能,是提升固体推进剂燃烧特性的有效方法之一。碳材料具有一定的催化高氯酸铵热分解的活性,但由于其缺陷位点有限,催化性能仍有待提高。因此,本论文采用球磨和原子层沉积相结合的技术手段,获得高性能ZnO改性石墨烯纳米片复合催化剂,研究其对高氯酸铵热分解
对于下肢截肢患者,穿戴不具备主动出力功能的被动假肢难以还原健全肢体功能。相关研究表明,缺失主动输出能力会导致下肢截肢患者消耗更多的能量才能达到预期的行走速度。为设计一款大小与质量合适、具备主动出力功能的踝足假肢,本文利用具有高效率、高功率密度的电液直驱技术为基础来进行研究,满足下肢截肢患者的日常生活的需求。首先本文从健全人体的踝关节特性出发,探究每个步态阶段中踝关节假肢应当实现的正确的力学特性与能
微透镜阵列在光场成像、大视角显示和照明等领域有着广泛的应用,近年来加工高精度的微透镜阵列曲面成为研究的热点。慢刀伺服技术具有精度可控、加工效率高、仅通过一次切削可获得满足光学要求的非回转曲面的特点,使其成为微透镜阵列可行的一种超精密加工方式。合理的刀具轨迹规划是提高表面质量的重要环节,本文以慢刀伺服加工微透镜阵列的刀具轨迹生成方法和表面形貌影响因素为主要内容展开研究。针对慢刀伺服加工技术的刀具轨迹
揭示空间辐照环境下生命活动的应激反应机制是未来太空安全探索开展的重要科学基础。微束辐照显微镜是开展地面模拟空间辐射环境生命科学研究的核心仪器,其中微束辐照剂量监测装置是该仪器能否准确实现辐照环境模拟的关键。其难点一在于粒子微束在空气中传播距离极短,而生物样品只有在空气中才存活,粒子束流在真空窗末端出射无法满足辐照生物样品与粒子剂量监测同时进行;难点二在于通过在生物细胞培养皿与粒子真空窗缝隙间使用塑
光学镜头在日常生产生活中有着广泛的应用。从常见的摄像头到制造芯片的光刻机,都离不开光学镜头的使用。光学镜头的装校环节是光学镜片制造过程中的最后一个环节,该环节决定了光学镜头的最终精度。目前,现有的自动化装校机构不能满足亚微米精度的光学镜头装校需要,亚微米精度的光学镜头装校采用的多是人工装校的方式。为实现亚微米级的自动化装校,本文设计了一亚微米精度光学元件自动化装校机构。本文设计的自动化装校机构进行
近年来,椎间盘突出症的发病率逐年升高,而传统的治疗方法会使脊椎的活动受到极大的限制,人工椎间盘置换术虽提供了新的方法,但现有技术仍存在结构复杂、机械固定、椎体破坏等问题。金属橡胶是通过特殊工艺制成的弹性多孔材料,广泛作为减振材料应用在武器装备、航空航天领域,其弹性特征与生物椎间盘类似,并且多孔特性有利于骨组织结合实现生物固定。但金属橡胶人工间盘在生物医学领域鲜有研究。本文将金属橡胶技术用于椎间盘置
降低碳排放和碳达标是目前人类面临的重大气候问题,也是科学研究中的重要研究领域,更高效的实现二氧化碳转化的技术是其中重要的研究方向。电化学还原二氧化碳的技术是当下实现二氧化碳转化相对高效的手段。本文拟利用质子和电子辐照实现Cu/PI材料中Cu表面成分和结构的改性,探索提升Cu基CO2催化还原效率提升新途径。本文纳米Cu薄膜/聚酰亚胺复合材料为研究对象,借助多种材料分析技术,表征电子/质子辐照改性后C
我国经济的快速发展离不开能源的大量利用。煤炭是我国的主体能源,其在能源利用结构中一直占有较大份额。作为煤炭利用的主要场所之一,燃煤电站每年都会向空气中排放大量CO2及NOx,对环境造成严重污染。基于我国提出的2060年前实现“碳中和”的战略目标,实现燃煤电站CO2高效捕集及NOx减排成为我国能源发展的重中之重。加压富氧燃烧技术不仅实现了CO2的高效捕集,还有效减少了NOx的排放,逐渐成为我国燃煤电
传统的纺织工业用水量大,产生大量的废水若直接排放会对生态系统产生有害影响,纳滤膜技术作为一种高效的水净化处理方法,可用于染料废水的脱色。膜技术的应用主要受到两方面的限制:膜分离性能问题和膜污染问题,因此,本课题提出以巴基纸膜为底膜构建碳纳米管复合纳滤膜,并将其应用于染料废水的处理中。巴基纸膜作为底膜,对膜的整体性能影响较大,需要对其物化性质及性能进行研究;为实现这种新型复合纳滤膜在染料废水中的应用
双酚类污染物(Bisphenols,BPs),是一种典型的内分泌干扰物,广泛应用于人们的生活中。BPs具有性腺激素活性,会破坏细胞正常功能,甚至部分BPs与一些慢性疾病的发生有关。目前已在全球范围检出了BPs的存在,但其在极地区域浓度和分布特征的研究仍不够充分。本文利用液相色谱串联三重四极杆首次建立了多介质样品中同时检测32种BPs的分析方法,利用液质高分辨建立32种BPs定性筛查数据库,对北极部