论文部分内容阅读
随着量子技术的发展和理论的不断完善,寻找更好的量子信息处理方案成为了一个前景广阔的研究方向。其中,高效、稳定、可扩展量子光源的实现是一个亟待解决的关键问题。半导体量子点由于其简单的实现特性、易于集成和潜在的大规模应用价值,近年来引起了人们的关注,因此,利用半导体量子点的单光子源是当前研究的热点。实现高单光子纯度的量子光源可以保证量子通信的安全性并最大限度地减少量子计算和模拟中的错误,在实际生产应用中具有重大意义。本文在量子点光子分子和量子点腔阵列耦合系统的基础上,提出了两种方案来产生高效稳定的单光子源。主要工作内容和创新点如下:1.第三章提出了一种基于量子点-光子分子耦合系统的高效、可扩展单光子源。该系统使用由两个光学微腔A和B耦合形成的光子分子,其中一个微腔含有量子点。连续波激励激光作用于A腔中的量子点,通过耦合强度g与腔A相互作用,且通过A腔与B腔中光场的相互作用,在B腔中产生单光子,并在其中进行输出提取。本模型在设计过程中充分考虑到了实际应用中必然遇到的问题,即输出光与激励光的分离,我们介绍了本系统的结构在输出光与激励光分离时的优势所在,还深入分析了一些衡量单光子源性能的物理概念与含义。针对计算结果我们给出了详尽的分析,找到了一些决定系统性能的参数间关系的规律性,并对实际制备这一系统提供了建议。该系统在大范围的点腔耦合强度变化(0.25k<g<k)和低腔隧穿强度(J≥0.5 k)下保持良好的单光子纯度。采用E/2π=1GHz强度的连续波激励,在可实现的最佳实验参数条件下,系统的零延迟二阶相关函数可接近10-7且同时保证0.25个每纳秒的输出光子强度。在本文提出的单光子纯度与输出强度均衡的方案下,可以实现单光子时均输出达1.1个每纳秒的同时保证单光子纯度达到g2(0)<10-5。我们还从理论上解释了系统产生亚泊松分布光的原因。本文所提出的模型对未来量子信息处理中高效、可扩展的单光子源设计具有重要的指导意义。2.第四章中进一步研究了连续波激励量子点下单量子点与由三个空腔A、B、C耦合形成的微腔阵列耦合系统的性能。量子点处于腔A中,与腔A的光学模式耦合,且腔A与腔B相邻、与腔C不相邻。在腔B腔C中都可以得到单光子输出,只是腔C中的单光子纯度较低,因此我们在腔B中进行单光子的提取。研究结果表明,引入一个额外的空腔可以在一定程度上使系统较第三章中设计的单光子源产生纯度更高的单光子,并且,在某些参数条件下,还可以从系统中得到超泊松分布光。某些参数范围内其单光子纯度优于前面的量子点-光子分子耦合系统,意味着可以通过腔C的引入对第三章中设计的单光子源的单光子纯度性能进行改善。这一系统的缺点在于构造上较为复杂,且单光子输出效率比第三章中提出的系统略差。而当某些量子光学过程需要更高的单光子纯度时,可以采用本系统提出的模型构造单光子源。