论文部分内容阅读
ZnO是一种直接带隙宽禁带半导体材料,室温时禁带宽度为3.37eV,激子束缚能高达60meV,这些特点使其适合制备短波长光电器件。然而,目前ZnO薄膜的研究仍存在诸多问题,未故意掺杂的ZnO的薄膜呈现n-型导电,但仍不能制备出电导率高的n-型ZnO薄膜;p-型导电的ZnO薄膜的稳定性和重复性仍不够可靠;同质结器件尤其是同质结器件的电致发光仍存在不少问题;异质结器件的研究较少,至今仍没有一种被广泛接受的载流子阻挡层。本论文针对以上难点问题,采用金属有机物化学气相沉积(MOCVD)技术在c-面蓝宝石和Si(111)衬底上制备了ZnO薄膜,研究了它们的晶体结构,表面形貌,光学和电学性质。研究的主要方面包括Ga元素掺杂,Cu元素掺杂,Cu-Ga共掺,同质结器件的制备和异质结器件的制备。在c-面蓝宝石衬底上制备了Ga掺杂ZnO薄膜,在其室温光致发光谱中发现了和未故意掺杂ZnO薄膜迥异的深能级发光。结合样品的电学性质和光学带隙的变化,我们推断由于Ga的掺入,ZnO薄膜中的缺陷已经发生了变化,而Ga掺杂ZnO薄膜室温光致发光谱中的深能级发光峰可能与受主补偿缺陷有关。研究了在Si(111)衬底上制备的Cu掺杂ZnO薄膜。在其低温光致发光谱(11.4K)中发现了具有特殊结构的绿光发光峰,对比未故意掺杂样品的低温光致发光谱,我们认为这种特殊结构的绿光发光峰是与Cu2+离子相关的。并采用类氢模型给出了合理的解释。这个工作澄清了ZnO中的绿光发光峰是否与Cu相关的争论,给出了判断的方法。采用Cu-Ga共掺的方法制备了p-型导电的ZnO薄膜,并通过优化生长工艺,得到的共掺薄膜的电阻为0.2499Ω·cm,迁移率为13.3cm5V-1s-1,载流子浓度为1.874×1018cm-3。并采用这一参数在ZnO单晶衬底上沉积了Cu-Ga共掺ZnO薄膜制备了ZnO基同质结器件,此器件在正向电流注入下得到了近带边室温电致发光,并成功采集到了电致发光光谱。这个工作表明Cu-Ga共掺的方法可用于制备p-型导电ZnO,为制备p-型导电ZnO提供了一个新的路径,可能会推动ZnO基同质结器件和ZnO基p-型透明导电薄膜的研究。分别从ZnO侧和GaN侧测试了n-ZnO/SiO2/p-GaN异质结器件室温电致发光谱,重新发现了SiO2的作用。在GaN侧发光峰在约391.3nm处,而在ZnO侧测试到的发光峰是由三个发光峰组成(372nm,380nm和390nm)。我们采用能带图对这种常被研究者忽略的差别给出了解释。制备了n-ZnO/Ga2O3/p-GaN异质结器件,与n-ZnO/p-GaN异质结器件比较发现,由于Ga2O3层的加入,~525nm处的深能级发光峰完全消失了,~392nm处的发光峰显著增强。结合能带图对Ga2O3载流子阻挡层在异质结器件的作用给出了解释。本工作中第一次采用Ga2O3材料作为载流子阻挡层,证明MOCVD技术生长的Ga203材料能满足光电器件的要求。这种材料的生长温度低,在ZnO薄膜的生长温度区间内。如果采用此材料作为载流子阻挡层,并采用Ga掺杂ZnO薄膜作为电子提供层,那么系统中所使用的元素种类将会减少。