【摘 要】
:
随着经济、可持续的新能源取代传统化石燃料的需求日益增长,锂资源的消耗不断增加,开发可替代锂离子电池(LIBs)的电化学储能技术引起了人们的广泛关注。其中,与锂离子电池具有相似存储机制的钠离子电池(SIBs),由于具有丰富的资源储量和低廉的成本,被认为是最有希望的下一代电化学储能技术。电极材料作为电池的关键部分很大程度上决定了电池的性能。因此,设计和构建合适的、稳定的、高性能的电极材料对推动钠离子电
论文部分内容阅读
随着经济、可持续的新能源取代传统化石燃料的需求日益增长,锂资源的消耗不断增加,开发可替代锂离子电池(LIBs)的电化学储能技术引起了人们的广泛关注。其中,与锂离子电池具有相似存储机制的钠离子电池(SIBs),由于具有丰富的资源储量和低廉的成本,被认为是最有希望的下一代电化学储能技术。电极材料作为电池的关键部分很大程度上决定了电池的性能。因此,设计和构建合适的、稳定的、高性能的电极材料对推动钠离子电池的发展具有重要的研究意义。在已经报道的各种储钠负极材料中,层状钛基氧化物因其较大的层间距、原材料丰富、优异的电化学性能以及环境友好等优点,成为最具吸引力的电极材料之一。层状结构Na2Ti3O7作为钛酸钠材料中电位最低、容量最高的化合物,与合适的正极材料匹配将有潜力获得最高的能量密度。但是其循环稳定性差,充放电过程容易发生相变,这导致性能衰减严重。此外,层状结构材料长时间暴露于空气中,空气中的H2O、CO2等小分子容易嵌入到层间结构,使得碱金属发生溶解、生成水合物等,加剧了电化学性能的衰减。因此,本文以层状钛基材料为研究对象,围绕提高电池稳定性和储钠动力学的结构设计,从晶体结构出发提出多种调控策略,制备了不同结构的层状钛基材料用于钠离子电池负极应用。具体开展了以下两方面的工作:1.采用固相法在不同温度驱动力下制备不同相结构的层状Na2Ti3O7材料,我们首次合成了三斜晶系的Na2Ti3O7化合物。这表明Na2Ti3O7化合物包含单斜和三斜两种相结构,两种相结构分别具有P 21/m1和P-1空间群。从晶体结构中我们发现两种相化合物中的TiO6八面体呈现不同的扭曲变形程度,具有不同的晶体结构和生长特点。此外,两种相结构表现不同的电化学行为和循环性能,单斜相Na2Ti3O7材料前20圈迅速衰减,而高温下得到的三斜相Na2Ti3O7材料保持相对稳定,具有更佳的循环性能。原位XRD检测到两种材料在充放电过程中发生结构变化,表现出差异化的储钠行为。其中三斜相Na2Ti3O7电极循环后保持更完整,其层状结构更加稳定。2.针对层状结构材料容易相变和对水分子敏感的特点,我们提出了掺杂的合成策略,在层状NaxTi O2中引入原子半径小、质量轻的锂元素,采用固相法制备层状Na0.73+xLi0.36-xTi0.73O2材料。其中,Li同时占据过渡金属层和钠离子层的位点,在x=0.0365时获得纯相的(Na0.73Li0.09)(Li0.27Ti0.73)O2材料,具有O3相的结构特点。对O3-(Na0.73Li0.09)(Li0.27Ti0.73)O2进行储钠机理研究,发现其表现出接近零应变的结构特点和超6000圈的长循环稳定性能。通过模拟空气中水分子加速老化实验对O3-(Na0.73Li0.09)(Li0.27Ti0.73)O2材料进行泡水实验,泡水后的O3-(Na0.73Li0.09)(Li0.27Ti0.73)O2具有优异的空气稳定性,明显优于包括P2-Na0.66Li0.22Ti0.78O2在内的大部分层状钛基材料,这得益于层状结构中较少的空位和较小的层间距。
其他文献
光纤水听器是一种能够将水下声音信号转换成光信号的新型换能器,在国防军事和国民经济等领域都有十分重要的作用。随着科学技术的发展,各领域对水听器性能的要求越来越高。光纤激光水听器利用光纤激光器作为传感单元,利用非平衡干涉仪进行干涉解调,具有重量轻、尺寸小、灵敏度高、复用结构简单等特点,极具研究价值,因此近年来受到了广泛的关注并得到了迅速的发展。本文从光纤激光器的原理出发,对光纤激光水听器传感系统进行了
盘形滚刀是TBM的主要破岩工具,并且容易磨损和断裂需要经常进行更换,同时TBM在施工过程中,尤其是在复杂地层中,刀盘在掘进过程中出现上部和下部受力不均,从而造成刀盘开裂与变形,从而引发一系列质量和安全问题。因此有必要对盘形滚刀和刀盘的疲劳寿命和可靠性进行深入的研究。又因为载荷谱是进行机械寿命预测和可靠性评估的基础,并且目前国内对载荷谱的研究还处于空白,国外由于保密原因,无法获取这些信息,并且目前T
随着经济全球化,科技革命与产业的升级,科技水平发展的高低已成为衡量一个国家综合国力重要指标。在当今时代,正确识别行业技术发展状况,挖掘技术缺口与短板,对避免发达国家的技术威胁,提升产业核心技术与持续创新能力具有重要意义。传统关于数控机床技术差距的研究方法大部分还停留在定性研究阶段,容易产生主观偏误性,少部分的定量研究则是基于单一维度的指标,只得到宏观的研究结果,缺乏对具体技术差距内容的描述。近年来
目的:对羟基苯甲酸酯是一种环境内分泌干扰物,已有研究表明对羟基苯甲酸酯暴露可能与肥胖相关。然而,关于妊娠期对羟基苯甲酸酯暴露对孕期以及产后体重状况的影响却并不清楚。孕期和产后的体重状况又有可能会对母亲及其子代长期的健康状况产生不良影响。本研究的目的是评估孕早、中、晚期尿液的对羟基苯甲酸酯浓度与孕期增重以及母亲产后体重滞留之间的关系。方法:本研究基于一项前瞻性产前队列研究,在2014年至2015年间
随着人们生活水平的提高和计算机网络系统的迅速发展,大量与互联网应用相关产品不断出现,特别是手持智能电子终端产品(手机)、车载信息显示系统以及其应用软件已经渗透到人们的日常生活中的每一个角落,使得驾驶员在开车时使用手机的现象频繁发生,造成驾驶员视觉信息通道过载,不能专心驾驶。研究表明,近几年,在所有的交通事故中,因驾驶员分神导致事故率的比重大幅增加。开展驾驶员分神研究,对于监控和规范驾驶员行为,提高
随着科技的不断进步,汽车的转向系统已从传统的机械式转向系统发展到以液压助力式、电控液压助力式与电动助力转向系统为代表的助力式转向系统,而如今较为流行的汽车电动助力转向EPS系统以其驾驶舒适、结构紧凑、节约能源、保护环境等优势成为了成为当下汽车转向系统的研究热点。本文选取某配备EPS系统的微型车作为研究对象,主要研究了匹配不同助力特性曲线的EPS系统对汽车操纵性能的影响。首先在查阅大量相关文献的基础
锂硫电池在理论上具有高能量密度和低成本的优势,是目前最具研究价值及应用前景的新一代电化学储能体系之一。然而单质硫的低电导率,充放电过程中的大幅度体积变化,中间产物溶解扩散造成的“穿梭效应”等问题,严重制约了锂硫电池的应用前景。氮化钒(Vanadium Nitride,VN)具有优异的导电性,用作载硫基底材料能够显著改善电极的导电性,并能有效抑制多硫化锂的穿梭。在本论文的研究中,将过渡金属掺杂至VN
目前,在跨单元调度中,普遍采用运输策略来决定车辆行驶路径,然而这些运输策略限制了车辆一次只能运输一个异常件或者车辆只能运输其所属单元内的异常件,造成车辆利用率不高,车辆在单元间的运输次数增加,导致总成本增加。为了提高车辆利用率,并在保证生产效率的同时,有效降低总成本,本文拟在具有不同车辆数量的单元制造系统中,对跨单元调度优化的同时,对车辆路径也进行优化,允许车辆一次运输多个异常件,且车辆由各单元共
超级电容器作为一种新型储能设备一直备受人们关注。目前广泛使用的有机系超级电容器虽然拥有高达2 V以上的电位窗口,但是因为有机电解液易燃易挥发等缺点导致有机系超级电容在实际应用中存在很多限制。水系超级电容器安全又廉价,且电解液的离子电导率高,功率密度大,具有广阔的应用空间。但是水的热力学分解电势只有1.23 V,导致水系超级电容器的工作电压低,常在1.0 V左右。因此如何提高水系超级电容器的工作电压
平行铸造车间主计划排产是集团式多车间铸造企业在模糊生产环境下,完成生产工艺相同而生产效益不同的平行铸造车间最优订单排产决策的过程。现有人工主计划排产方式排产效率低下,排产结果缺乏科学性与合理性,容易造成订单拖期严重、企业生产效率低下、车间生产负载不均衡等问题。为此,本文研究了基于改进多目标粒子群算法的平行铸造车间主计划排产建模及求解方法,并通过多个规模的仿真实验验证了所提出的多目标优化算法辅助排产