Mn掺杂PMN-PT弛豫铁电薄膜的制备与热释电性能研究

来源 :上海师范大学 | 被引量 : 0次 | 上传用户:joyceywq
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
以热释电材料为灵敏元的热释电红外探测器因其不需要制冷并且能够实现宽波段响应等特点被广泛应用到军事、医疗、工业、航天、科研等领域,发展高性能的热释电材料对提升器件性能具有重要意义。热释电薄膜与体材料像单晶陶瓷相比既继承了热释电体材料容易制备、易掺杂改性等优点,又具有灵敏元薄,灵敏度高,响应速度快,易与微电子技术相集成,成本低等特点,可进一步促进热释电探测器的发展。本论文紧密围绕0.3mol.%Mn-0.72Pb(Mg1/3Nb2/3)O3-0.28Pb Ti O3(Mn-PMNT(72/28))体系材料,采用脉冲激光沉积法(PLD)制备了具有优异铁电热释电性能的Mn-PMNT(72/28)薄膜,主要研究内容与结果如下:1.采用传统固相反应法制备了Mn-PMNT(72/28)陶瓷,研究了烧结温度对陶瓷的结构与电学性能的影响规律。通过传统固相反应法制备得到晶粒发育良好且均匀的Mn-PMNT(72/28)靶材。表征了不同烧结温度下制备的陶瓷样品的相结构、显微结构、畴结构以及电学性能(包括介电、铁电、压电和热释电性能)。其中在1255℃下烧结的陶瓷综合性能良好,室温下热释电系数可达7.19×10-4Cm-2K-1。成功制备了兼具优异的热释电性能以及良好铁电压电性能的Mn-PMNT(72/28)陶瓷靶材,为后续薄膜制备奠定了良好的基础。2.采用脉冲激光沉积方法(PLD)制备了<111>取向的弛豫铁电体Mn-PMNT(72/28)薄膜,研究了衬底温度和沉积氧压对薄膜的结构与电性能的影响规律。使用脉冲激光沉积系统在<111>取向的Sr Ti O3单晶衬上以及Sr Ru O3电极上制备Mn-PMNT(72/28)薄膜,通过改变衬底温度、沉积氧压等工艺参数来优化工艺。测试了不同条件下薄膜的相结构显微结构,以及介电性能、铁电性能,并分析总结出不同制备工艺参数对薄膜性能的影响规律。测试结果表明,在600°C以及15 Pa的条件下所制备的Mn-PMNT(72/28)薄膜性能更优异,厚度约为290nm且结构致密;在室温和频率1 k Hz下介电损耗正切值为0.08,具有相对较高的介电常数为2540,剩余极化强度为21.6μC/cm2,矫顽场为2.8 k V/mm;在低电场下,漏电流密度低至3.2×10-7A/cm2;较高的热释电系数11.4083×10-4Cm-2K-1。以上结果显示,本实验中所制备的Mn-PMNT(72/28)薄膜在非制冷红外探测器应用中是有力的候选材料。
其他文献
光热治疗(Photothermal Therapy,PTT)是一种新型的非侵入式癌症治疗手段,光热剂吸收光能后以热的形式释放,可实现热消融肿瘤。纳米粒子可通过增强渗透和滞留效应(Enhanced Permeability and Retention effect,EPR效应)在肿瘤部位蓄积。在肿瘤部位进行局部光照,可实现原位癌症治疗。然而,单纯靠热的作用杀死癌细胞,会引起细胞Hsp90蛋白的表达而
光动力学治疗(Photodynamic therapy,PDT)是近年来引发广泛关注的一类新的肿瘤治疗手段。与手术、化疗、放疗等常规治疗手段相比,PDT具有精确有效、侵袭性低、治疗过程短、可重复治疗等优势。目前,制约PDT发展和应用的问题主要包括:光敏剂(photosensitizer,PS)的疏水性质使得其易在水溶液中发生聚集,导致其生物利用率降低、活性氧(Reactive oxygen spe
微纳机器人领域是一个新兴领域,因为其在微观尺度上可以操控,被定位以及实现功能化引起了科研工作者极大的兴趣。尤其是近几年越来越多的微纳机器人被用在生物医学领域,开阔了该领域研究的新方向。目前研发新型的微纳米机器人和探索微纳机器人的制备保存条件和相关运动都是研究重点。有研究表明微螺旋结构被认为是低雷诺数环境中理想的模型,在高粘度的情况下运动速度最快。而螺旋藻(Spirulina)作为藻类生物中完美螺旋
非晶氧化物薄膜因具有高的透明性、高迁移率、制备温度低和高均匀性等众多优点,被广泛应用到薄膜晶体管(TFT)的沟道层中。到目前为止,人们已经研究出许多性能优异的非晶氧化物薄膜,其中非晶InGaZn O薄膜的电学性能最为突出,并且基于这种材料的TFT目前也投入到了工业生产当中。性能优异的非晶氧化物薄膜大多基于氧化铟材料,但地球上In元素丰度极低、价格高昂且具有一定的毒性,所以开发低成本和高性能的新型无
在过去的几十年中,动脉血栓沉积引起的血栓性动脉瘤的发病率有所增加。但是,对于血栓性动脉瘤治疗前的诊断还存在着缺陷,例如,数字减影血管造影(DSA)是动脉瘤诊断的金标准,但DSA仅能对有丰富血流的瘤腔有造影效果,若瘤腔内还有大量血栓则无法对其显影。因此,除需要评估动脉瘤瘤腔大小以外,还需要一种新颖的生物标志物来评估动脉瘤瘤壁的完整性和其破裂风险。在动脉瘤瘤内的血栓中含有大量的磷脂丝酰胺酸(PS),P
氮化硅陶瓷因其弯曲强度和断裂韧性等优异的力学性能和机械性能而被应用于许多方面,但目前来说,韧性有待进一步提高,而氮化硅自身为灰色,颜色单一性使其在很多应用中受到了限制。那么制备出一种多色的高韧性氮化硅陶瓷材料,就显得尤为重要。本文以α-Si_3N_4粉为原料粉体,通过添加三元烧结助剂氧化钇、氧化铝和氧化镁并调整其最佳比例来改变液相的含量以及组成,促使其在生成长径比较大的柱状晶的同时致密性能到提高,
氧气供应不足普遍存在于各种实体瘤中,这被认为是晚期实体瘤的特征之一。缺氧可以促进肿瘤血管生成和癌症转移;恶性缺氧也导致了对肿瘤治疗(如放疗、化疗、光动力治疗、声动力治疗)的固有抵抗,因此导致了许多抗肿瘤效果不佳。近年来,声动力治疗作为一种微创非侵入性治疗方法已经被广泛研究用于肿瘤治疗。其相应的声敏剂被低强度的超声(US)激活,产生毒性较大的活性氧(ROS)用于肿瘤治疗。声动力治疗(SDT)与光动力
高压作为平行于温度、磁场、化学掺杂的物质调控手段,是探索和发现新材料、调控物性和诱导新奇物理现象的重要工具之一。高压能够有效地减小原子(分子)间距离、改变键合的类型,进而诱导可能的晶体结构和电子结构相变,再结合温度、磁场等综合手段,可以在不引入杂质的情况下较“纯净”的、连续调控物性,进而有效地揭示基本物理机制。因而近些年高压技术在凝聚态物质领域发挥着越来越重要的作用,如在铁电材料、拓扑材料和半导体
最近,在f(R)引力下导出了一类新的带电球对称黑洞解。我们的目的是探究这类新的黑洞解在外部标量场扰动下的稳定性问题。首先,我们考虑无质量中性标量场的扰动。在频域上,用三阶WKB方法计算了拟正则模频谱;在时域上,用有限差分法模拟了扰动场随时间的演化。通过拟正则模的计算,可以判定黑洞时空是稳定的,并且我们发现随着黑洞参数α的增大,扰动衰减变快,即黑洞稳定性更好。之后,我们又考察了黑洞在有质量荷电标量场
光致发光(Photoluminescence,PL)光谱是研究半导体材料发光特性的经典手段,具有非破坏、高灵敏等优点,在分析半导体材料能带结构等方面具有相当大的优势,不但能够揭示半导体的