论文部分内容阅读
量化投资近些年来越来越受到投资者的关注,尤其在中国,股票市场与期货期权市场有着非常多的标的可以进行交易与投资。由于机器学习方法本身与量化投资的特点相契合,机器学习方法逐渐成为了量化投资的主流研究方向。怎样将机器学习的优点与量化投资相结合,并且尽量规避机器学习方法过拟合的缺点,成为了很多从业者所要解决的主要问题。本文主要从国内较为活跃的商品期货铁矿石期货主力连续合约入手,对其日线级别的数据进行建模,从价格与成交量等数据中提取出特征,并对特征进行进一步的超额收益有效性检验与刻画市场价格状态能力的筛选,然后构造随机森林模型对市场涨跌状态进行预测,最后形成关于铁矿石期货的量化交易策略。本文首先介绍了量化投资、机器学习模型等领域的发展历程,简述了与实证部分相关的理论知识基础。之后用铁矿石的主力连续合约日线级别数据进行了实证研究。实证研究的第一步是构建特征,这些特征的来源是铁矿石日线级别的量价信息,接着使用非参数的bootstrap方法检验了每个特征对应的超额收益有效性。然后,利用上一步筛选的结果,使用非监督的隐马尔科夫模型检验哪些特征可以较好地刻画市场的状态。随后,使用如上步骤筛选出的指标构造模型对样本外数据进行预测。最后,根据预测的结果形成最终的铁矿石量化投资策略。本文的实证研究结果表明,本文所构造的随机森林模型在较短的时间尺度上可以达到较为良好的准确率,从量化策略的绩效角度讲可以获得更高的收益与更低的最大回撤。这说明了有效地使用机器学习方法与量化策略相结合可以产生稳定的超额收益。本文的研究结果有着一定的应用价值,后续的研究也可以基于此进一步探索下去。