论文部分内容阅读
在生物进化的过程中,Ca2+成为真核生物中重要的第二信使之一。在响应生物或非生物胁迫时,细胞质内Ca2+浓度会发生特异的时空变化,这种特异的变化被称之为Ca2+信号。为了响应这些特异的钙信号,植物体内逐步产生了大量的Ca2+感受器和效应器。拟南芥 calcineurin B-like(CBL)和 CBL interacting protein kinase(CIPK)是其中一类典型的Ca2+信号感知和解码蛋白复合物,调控了一系列下游蛋白的应激响应。近些年来,活性氧ROS也被发现是另一类重要的第二信使,尤其在植物免疫反应以及长距离信号转导中有关键作用。最近的研究表明,Ca2+信号通路与ROS信号通路之间存在着某种关联。本研究发现,拟南芥NADPH氧化酶RBOH是Ca2+信号和ROS信号的一个重要结合点。本研究通过生物化学、细胞生物学和遗传学等手段对CBL/CIPK调控RBOHF蛋白活性的分子机理进行了深入研究。本研究发现,在人肾胚(HEK)293T细胞异源表达系统中,CIPK26和CIPK11均能够与CBL1/9 一起激活RBOHF的活性。进一步分析发现,CIPK11和CIPK26对RBOHF的激活不存在协同效应,推测CIPK11和CIPK26可能在不同信号通路中起作用或者二者存在功能冗余。生化结果显示,CIPK11和CIPK26均在体外磷酸化RBOHF-N,而且施加Ca2+能够增强RBOHF-N的磷酸化强度。在HEK293T细胞中进行深入分析发现,RBOHF的激活依赖于CIPK26的激酶活性以及CBL1/CIPK26复合物的细胞膜定位;而RBOHF活性的进一步增强依赖于Ca2+对RBOHF的结合。因此,磷酸化和Ca2+的结合对RBOHF的激活是至关重要的,而且二者似乎能够互相增强彼此的功能。本研究还发现另一个重要的蛋白激酶open stomata 1(OST1/SnRK2.6)也能够在HEK293T细胞中调控RBOHF的活性。在HEK293T细胞中,对OST1的N端增加一个细胞膜定位的信号(PM)后发现,PM-OST1强烈地激活RBOHF。该发现表明OST1在细胞膜上的活性受到如蛋白间互作或者蛋白修饰等未知机制的调控。进一步研究发现,ABA信号通路中的OST1和Ca2+依赖的的CBL1/CIPK26在激活RBOHF上存在协同机制。质谱分析发现,CIPK26和OST1作用于RBOHF-N的位点存在异同。在HEK293T细胞中对这些位点的功能分析使得对RBOHF的调控机制能够进行深入的解析。最后,本研究发现蛋白磷酸酶PP2C家族成员ABI1强烈抑制CBL1/CIPK26和PM-OST1对RBOHF的激活,从而负调控RBOHF的活性。综上所述,我们的研究表明,在拟南芥NADPH氧化酶RBOHF被激活后,其介导的ROS生成能够在很短时间内迅速增强,而RBOHF的激活依赖于蛋白激酶的磷酸化以及Ca2+的结合。同时,我们也发现,RBOHF的活性不仅受到Ca2+依赖的多个蛋白激酶的调控,而且也受到Ca2+不依赖的蛋白激酶调控,从而揭示了 RBOHF调控机制的复杂性。根据本研究的结果,我们对RBOHF的复杂调控机制提出如下的模型:植物体在响应外界胁迫或者发育过程中的刺激信号时,快速形成的特异Ca2+信号能够通过Ca2+结合到RBOHF和Ca2+依赖的磷酸化在数秒或者数分钟内迅速的激活RBOHF;而经过较长时间合成的ABA能够激活OST1,从而增强和维持RBOHF介导的ROS生成。当胁迫或者刺激信号减弱时,ABA浓度的降低使ABI1的活性得到增强,ABI1去磷酸化RBOHF,从而抑制其功能。通过这种方式,RBOHF的磷酸化和去磷酸化得以平衡,使得植物体内ROS的生成得到精细的调控。RBOHF的这些复杂调控机制的生物学意义也会随着研究方法的不断改进而被逐步揭示,而这些机制对于研究其它NADPH氧化酶的调控也有重要的参考价值。