【摘 要】
:
衍射光栅现已被应用于各种光学系统中,在光谱分析、光通信、光耦合、光学传感等领域具有重要应用价值。纯硅基光栅能够与MEMS加工工艺相兼容,并具有易于量产、成本低廉、加工工艺简单等特点,引起了广泛关注。本文对硅基双层亚波长光栅进行研究,利用“伍德异常”现象,设计优化了一款用于光学位移检测的高灵敏度位移传感结构并研究了其耦合机理。为了简化双层光栅的分析过程,采用严格耦合波分析(Rigorous Coup
论文部分内容阅读
衍射光栅现已被应用于各种光学系统中,在光谱分析、光通信、光耦合、光学传感等领域具有重要应用价值。纯硅基光栅能够与MEMS加工工艺相兼容,并具有易于量产、成本低廉、加工工艺简单等特点,引起了广泛关注。本文对硅基双层亚波长光栅进行研究,利用“伍德异常”现象,设计优化了一款用于光学位移检测的高灵敏度位移传感结构并研究了其耦合机理。为了简化双层光栅的分析过程,采用严格耦合波分析(Rigorous Coupled Wave Analysis,RCWA)方法求解双层光栅电磁场问题,提出将中间空气层近似看做占空比很小的光栅结构,电磁场表达式表达为与光栅层类似的傅里叶级数展开形式,并编写了基于RCWA算法的MATLAB程序,验证了RCWA分析双层光栅结构时具有较高准确性。为了实现较高的光学位移结构灵敏度并节约优化时间,将RCWA算法与粒子群算法相结合,对纯硅基亚波长双层光栅结构进行了参数优化。通过改变双层光栅结构参数如光栅周期、梁宽、厚度、间距等,在入射波长为1037.3μm时,得到了5μm位移区间上14.32%/μm的灵敏度。相比于仿真软件,基于RCWA算法的优化时间降低为原来的1/15。本文最后对纯硅基亚波长光栅中“伍德异常”现象的产生原因进行了探究。双层光栅出现异常衍射现象表明,当双层光栅处于特定的相对位移处,光栅会将垂直入射的TE极化波转化为沿着双层光栅中间空气层传播的倏逝波,导致只有很小一部分能量能够通过双层光栅结构并传播至远场,使透射率在该位移处变小,从而表现出异常衍射特性。因该现象对双层光栅相对位移极为敏感,能够有效提高光学位移传感结构的灵敏度。该耦合机理研究为后续进一步利用双层光栅设计高灵敏度的位移传感器奠定了基础。
其他文献
随着科学技术的快速发展,人工电磁材料的应用频段已由最开始的微波波段,逐渐扩展到具有更高频率的太赫兹及红外等波段,其结构单元尺寸也越来越小,对加工制备要求越来越高。多孔氧化铝模板是具有排列有序、垂直度好和高纵横比的周期性孔道结构,在制备人工电磁材料方面具有工艺简单、结构尺寸可调、成本低廉的特点。本文以基于多孔氧化铝模板的复合结构为研究对象,对其在太赫兹至红外波段的电磁特性进行理论分析,探讨其潜在的应
超导重力仪是利用超导体的零电阻特性和迈斯纳效应构建的相对重力仪,主要用于当地时变重力测量。超导重力仪具有仪器固有噪声低、标度因子漂移小、灵敏度高的特点,作为目前世界上分辨率最高、稳定性最好的相对重力仪,其在地球物理学中发挥着越来越大的作用。超导重力仪的核心部件是工作在4.2 K温度下的垂向超导加速度计。为了使超导重力仪的敏感轴方向与当地重力方向始终保持一致,超导重力仪采用倾斜反馈控制环节进行调平,
非平面环形腔激光器(Non-Planar Ring Oscillator,NPRO)因其结构紧凑、性能稳定、噪声低等优点被广泛应用于激光雷达、激光相干通信等各个领域,特别是可应用于空间引力波探测。我国自主开展的空间引力波探测计划—天琴计划对种子光源有更高的要求,本论文主要围绕满足于天琴空间引力波探测计划的非平面环形腔激光器的关键技术进行研究。主要研究内容如下:借助于本征偏振理论分析了非平面环形腔的
超低相位噪声和超高频率稳定度的微波频率源在基础物理研究、深空探测和雷达技术等领域都有着重要的应用。目前,高Q值低温蓝宝石谐振腔是实现高性能振荡器的最佳选择。本论文从低温蓝宝石振荡器的搭建入手,讲述了作者在研究生期间的主要工作,包括了低温蓝宝石谐振腔参数的调节和温度控制、两套自由振荡低温蓝宝石振荡器的搭建与其拍频结果的初步分析。蓝宝石晶体的介质损耗随着温度的降低而减小,其Q值从室温(300 K)到低
高精度加速度计在生物医学、交通应用、航空航天和地质灾害预测等各个领域都有重要应用。其中,法布里-珀罗(Fabry-Perot,F-P)干涉型光纤加速度计以其结构简单、灵敏度高、共模噪声抑制能力强等优点受到广泛关注。本文将光学检测与金属挠性机械结构相结合,采用双簧片对称支撑结构以及腔长可控的光纤与机械结构集成方式,实现了小型一体化F-P干涉型高精度光纤加速度计。主要工作内容包括以下几个方面:(1)F
超高灵敏度原子磁力仪在生物医疗、无损检测和基础科学等领域得到越来越广泛的应用。随着科技进步,对未知领域的探索驱使人们研制出越来越高灵敏度的磁力仪。基于MEMS技术的原子磁力仪因具有超高灵敏度、小体积和低功耗等优势受到国内外研究人员的广泛关注,其核心微气室的体积决定了磁力仪系统的小型化程度。本文围绕MEMS原子磁力仪核心微气室展开相关研究工作,主要内容包括:(1)详细调研各种硅基MEMS原子磁力仪和
低频率噪声和高稳定度的激光频率标准是深入开展精密测量物理研究的重要工具。随着激光稳频技术的持续发展,532 nm碘稳频系统被期待未来能够应用于自由落体绝对重力仪、空间引力波探测、下一代全球导航卫星系统等领域。这不仅要求稳频激光系统有更低的频率噪声和更高的稳定度,还需要系统有更小体积和更低功耗。本论文围绕集成化碘稳频系统讲述了作者在硕士期间的主要工作,包括系统的设计、搭建与集成和稳定度的评估,期望研
硫化氢(H2S)是一种有毒有害气体,能够直接攻击人的呼吸系统和神经系统,使人造成窒息、休克乃至死亡。为解决H2S气体的检测难题,本论文旨在设计基于薄膜材料的H2S气敏传感器,以氧化铟(In2O3)和硫化钼(MoS2)材料为主要的研究对象开展气敏探究实验。一直以来气敏传感器的研究重点是性能的提升,而器件的集成化工作略显不足,限制了在移动终端上集成气敏器件的发展。以此为出发点设计实验,通过采用半导体工
引力波探测是研究宇宙形成早期过程、大质量恒星演化、星系合并和极端质量比旋进等天文学现象的重要手段。目前进行引力波探测大多是采用激光干涉测距,这就需要激光光源具有较好的相干性和低噪声性能。非平面环形腔激光器(Non-Planar Ring Oscillator,NPRO)以其独特的环形腔结构设计实现了较为优异的频率稳定度和窄线宽性能,被广泛选作为引力波探测光源。本文基于自主搭建的非平面环形腔激光器,
万有引力常数G作为一个基本物理学常数,其精确测量一直受到各国物理学家的广泛关注。本实验室于2018年同时采用扭秤周期法和角加速度法这两种完全独立的方法进行测G实验,测得迄今最高精度的G值,但是仍然没有找出国际上各小组测G结果不吻合的原因。本课题组在先期实验的基础上拟开展大振幅扭秤测G实验研究,在同一套装置上分别通过扭秤周期和三倍频谐波振幅提取G值,以寻找不同方法中可能存在的未知系统误差。为了实现大