论文部分内容阅读
随着信息科学、微电子学、神经生理学以及医疗电子技术等诸多学科的交叉与融合,以医疗监测为目的生物电信号记录技术的研究已形成一个新的研究领域。在癫痫等脑神经疾病的手术治疗过程中,颅内电极脑电记录对癫痫病灶的精确定位有着非常重要的作用。进行颅内脑电信号无创口长时间脑电记录,提高病灶定位的精确度,可以大大降低术后感染的风险和降低手术治疗对脑组织的损伤,对现有的临床工作有非常大的意义。因此,植入式多通道脑电记录系统的研制在癫痫诊疗应用中有着非常迫切的需求。
脑电信号幅度小、源阻抗高,实现高频神经放电脉冲的捕捉,对脑电信号记录模拟前端芯片的低噪声以及高输入阻抗范围的宽带化设计提出了更高的要求。另外,通过记录电极所引入的直流失调、工频等干扰会严重影响脑电信号的记录质量,对模拟前端芯片的信号调理能力带来了较大的挑战。
本文从医疗诊断应用出发介绍了脑电信号的产生机理及其电特性,分析了脑电信号的电极传感模型以及影响脑电信号完整性的干扰因素,重点研究脑电信号调理模拟前端芯片低噪声、低功耗、高输入阻抗以及抗干扰技术,实现脑电信号记录模拟前端芯片整体性能的有效提高。
为了深入了解电路中各功能模块以及元件参数和模拟前端斩波放大器各性能指标的关系,指导芯片设计过程的参数选择范围及调整方向,基于谐波传递矩阵(HTM)分析方法,分析两级闭环斩波放大器的系统传递特性,得到两级闭环斩波放大器的频率补偿方法,并在两级闭环斩波放大器参数设计的经验基础上,定量分析补偿特性。
提出了一种全集成的新型低噪声、低功耗、高输入阻抗的前端电路架构,由低噪声高输入阻抗斩波仪表放大器、低通滤波器、可编程增益放大器以及通道选择开关等组成。其中,为了满足高输入阻抗范围宽带化的应用需求,提出了一种三OTA两级闭环斩波仪表放大器结构,使前端放大器具有较高的原始输入阻抗,在此基础上引入负阻抗补偿阻抗提升电路,使放大器的输入阻抗达到了较高的水平,并且具有高输入阻抗宽带化的效果;针对脑电记录过程中共模干扰抑制的高性能要求,设计了共模反馈(CMFB)环路,使放大器具有较高的共模抑制比(CMRR)以及输入共模摆幅容忍度;为抑制记录电极极化所产生的直流失调,设计了直流伺服环路(DSL),在直流伺服环路中设计了一种新型的4阶段开关电容积分器,使用小容量片上电容实现了较大的积分时间常数,从而使斩波仪表放大器的高通截止频率延伸到了1Hz以下,并在积分OTA上采用全差分斩波放大结构抑制环路闪烁噪声;在闭环斩波结构的线性放大级中引入了微分型反馈环路,同时实现斩波仪表放大器的频率补偿以及纹波抑制。
基于0.18μmCMOS工艺,针对设计的模拟前端芯片进行了两次流片验证。第一次芯片结构是三OTA两级闭环斩波仪表放大器的24通道模拟前端;第二次流片在第一次流片的基础上,为了进一步提高模拟前端芯片的输入阻抗,引入了负阻抗补偿阻抗提升技术。芯片测试结果显示,未引入负阻抗补偿前斩波放大器本身具有280MΩ的较高输入阻抗,引入补偿后提升到了5.7GΩ,并且在100Hz频率处仍然可以达到4.6GΩ,1GΩ输入阻抗的信号带宽为300Hz,达到或超过目前文献报道的最高水平。该放大器结构具有较好的共模及电源抑制特性,在50Hz交流工频处CMRR为98dB,PSRR为83dB。最大输入共模电压容忍度≥320mVpp,最大输入直流失调容忍范围大于±150mV。模拟前端的-3dB带宽为0.6Hz-5.4kHz,增益从39.8-52.9dB可编程,中频带等效输入噪声谱密度为125nV/rtHz,在0.5Hz-1kHz积分带宽内的等效输入噪声为4.1μVrms。所实现的脑电信号记录模拟前端的单通道功耗为1.8μW,所得到的噪声效率因子为5.3,电路各项指标均满足设计要求,通过可编程放大器增益的配置,可以满足不同电极以及植入部位的应用需求。
为了验证所设计芯片在生物电信号记录方面的性能,在没有使用右腿驱动电路的情况下,基于三电极导联法进行了心电放大测试,通过示波器,在带限设置下测量所设计前端芯片的输出波形,得到较为清晰的心跳脉冲节律。进一步证明了本文所设计模拟前端电路在输入阻抗以及共模抑制特性方面的良好性能,为后期植入动物试验打下了良好的基础。
脑电信号幅度小、源阻抗高,实现高频神经放电脉冲的捕捉,对脑电信号记录模拟前端芯片的低噪声以及高输入阻抗范围的宽带化设计提出了更高的要求。另外,通过记录电极所引入的直流失调、工频等干扰会严重影响脑电信号的记录质量,对模拟前端芯片的信号调理能力带来了较大的挑战。
本文从医疗诊断应用出发介绍了脑电信号的产生机理及其电特性,分析了脑电信号的电极传感模型以及影响脑电信号完整性的干扰因素,重点研究脑电信号调理模拟前端芯片低噪声、低功耗、高输入阻抗以及抗干扰技术,实现脑电信号记录模拟前端芯片整体性能的有效提高。
为了深入了解电路中各功能模块以及元件参数和模拟前端斩波放大器各性能指标的关系,指导芯片设计过程的参数选择范围及调整方向,基于谐波传递矩阵(HTM)分析方法,分析两级闭环斩波放大器的系统传递特性,得到两级闭环斩波放大器的频率补偿方法,并在两级闭环斩波放大器参数设计的经验基础上,定量分析补偿特性。
提出了一种全集成的新型低噪声、低功耗、高输入阻抗的前端电路架构,由低噪声高输入阻抗斩波仪表放大器、低通滤波器、可编程增益放大器以及通道选择开关等组成。其中,为了满足高输入阻抗范围宽带化的应用需求,提出了一种三OTA两级闭环斩波仪表放大器结构,使前端放大器具有较高的原始输入阻抗,在此基础上引入负阻抗补偿阻抗提升电路,使放大器的输入阻抗达到了较高的水平,并且具有高输入阻抗宽带化的效果;针对脑电记录过程中共模干扰抑制的高性能要求,设计了共模反馈(CMFB)环路,使放大器具有较高的共模抑制比(CMRR)以及输入共模摆幅容忍度;为抑制记录电极极化所产生的直流失调,设计了直流伺服环路(DSL),在直流伺服环路中设计了一种新型的4阶段开关电容积分器,使用小容量片上电容实现了较大的积分时间常数,从而使斩波仪表放大器的高通截止频率延伸到了1Hz以下,并在积分OTA上采用全差分斩波放大结构抑制环路闪烁噪声;在闭环斩波结构的线性放大级中引入了微分型反馈环路,同时实现斩波仪表放大器的频率补偿以及纹波抑制。
基于0.18μmCMOS工艺,针对设计的模拟前端芯片进行了两次流片验证。第一次芯片结构是三OTA两级闭环斩波仪表放大器的24通道模拟前端;第二次流片在第一次流片的基础上,为了进一步提高模拟前端芯片的输入阻抗,引入了负阻抗补偿阻抗提升技术。芯片测试结果显示,未引入负阻抗补偿前斩波放大器本身具有280MΩ的较高输入阻抗,引入补偿后提升到了5.7GΩ,并且在100Hz频率处仍然可以达到4.6GΩ,1GΩ输入阻抗的信号带宽为300Hz,达到或超过目前文献报道的最高水平。该放大器结构具有较好的共模及电源抑制特性,在50Hz交流工频处CMRR为98dB,PSRR为83dB。最大输入共模电压容忍度≥320mVpp,最大输入直流失调容忍范围大于±150mV。模拟前端的-3dB带宽为0.6Hz-5.4kHz,增益从39.8-52.9dB可编程,中频带等效输入噪声谱密度为125nV/rtHz,在0.5Hz-1kHz积分带宽内的等效输入噪声为4.1μVrms。所实现的脑电信号记录模拟前端的单通道功耗为1.8μW,所得到的噪声效率因子为5.3,电路各项指标均满足设计要求,通过可编程放大器增益的配置,可以满足不同电极以及植入部位的应用需求。
为了验证所设计芯片在生物电信号记录方面的性能,在没有使用右腿驱动电路的情况下,基于三电极导联法进行了心电放大测试,通过示波器,在带限设置下测量所设计前端芯片的输出波形,得到较为清晰的心跳脉冲节律。进一步证明了本文所设计模拟前端电路在输入阻抗以及共模抑制特性方面的良好性能,为后期植入动物试验打下了良好的基础。