【摘 要】
:
恶劣环境下拍摄的图像通常会存在明显的退化现象,导致图像内容缺失,视觉质量下降。单幅图像去雨和暗光图像增强是恶劣环境下图像复原与增强的重要任务。单幅图像去雨任务旨在去除雨图中的雨纹,复原图像的本真样貌。然而图像去雨过程中往往还会出现图像纹理细节信息模糊和丢失的问题。暗光图像增强任务旨在增强暗光图像的亮度,使图像内容能够清晰完整地展现。然而暗光增强过程中往往还会出现噪声放大、细节模糊和色彩偏差的问题。
论文部分内容阅读
恶劣环境下拍摄的图像通常会存在明显的退化现象,导致图像内容缺失,视觉质量下降。单幅图像去雨和暗光图像增强是恶劣环境下图像复原与增强的重要任务。单幅图像去雨任务旨在去除雨图中的雨纹,复原图像的本真样貌。然而图像去雨过程中往往还会出现图像纹理细节信息模糊和丢失的问题。暗光图像增强任务旨在增强暗光图像的亮度,使图像内容能够清晰完整地展现。然而暗光增强过程中往往还会出现噪声放大、细节模糊和色彩偏差的问题。因此,恶劣环境下的图像复原与增强任务不仅要充分去除图像中因恶劣环境因素导致的退化现象,还要抑制图像复原与增强过程中其他退化问题的产生,具有较强的挑战性。本文提出了两种基于深度学习的方法分别完成单幅图像去雨和暗光图像增强任务,简要描述如下:(1)针对目前单幅图像去雨方法存在的雨纹去除不充分和纹理细节丢失的问题,本文提出了一种基于上下文信息的单幅图像去雨方法。具体来说,本方法构建了一个基于通道注意力机制的多尺度循环残差网络,旨在充分利用多种上下文信息以提升网络的去雨能力。该网络的主干部分包含三个基本模块,分别是为充分利用各循环阶段间上下文信息引入的长短期记忆网络模块,为充分利用像素间上下文信息构建的混合特征提取模块以及为充分利用图像通道间上下文信息构建的基于残差通道注意力机制的残差模块。实验结果表明,本方法能够充分去除雨图中的雨纹并有效保护图像的纹理细节。(2)针对目前暗光图像增强方法存在的亮度增强不充分,噪声放大和细节模糊的问题,本文提出了一种基于逐像素线性映射的暗光图像增强方法。具体来说,本方法以逐像素线性映射方式完成暗光图像增强,旨在同时改善暗光图像的亮度并增强纹理细节信息。本方法提出的暗光增强网络模型包含增强网络和修复网络两个模块,增强模块通过多尺度特征学习生成逐像素增强矩阵,旨在初步改善图像的亮度以获取粗增强图像;在此基础上,修复模块进一步学习出增强所需的残差分量,旨在进一步调整粗增强图像的亮度,并抑制初始增强图像中的各类退化现象。最后,将粗增强图像和残差分量进行逐像素相加,得到最终的增强图像。实验结果表明,本方法能够有效增强暗光图像亮度并使增强结果拥有清晰完整的纹理细节。
其他文献
从非结构化文本中进行信息抽取和知识图谱构建在自然语言处理(Natural Language Processing,NLP)任务中均发挥着至关重要的作用,而实体关系抽取(Entity and Relation Extraction,ERE)又是信息抽取和知识图谱中的一个关键而又具有挑战性的子任务。ERE又是由命名实体识别(Named Entity Recognition,NER)和关系抽取(Rela
随着互联网的发展,越来越多的创作者在社交媒体上发布文章。但随着文章的不断增多,其内容质量也变得参差不齐,其中包括大量的低质量的甚至传播虚假信息的文章。因此,如何从海量的多媒体文章中自动筛选高质量的内容是十分重要的。现有的方法往往依赖于大量的人工标注数据来训练质量评估模型。并且现有的方法通常会考虑社交媒体文档中的描述性内容特征和简单关系,但不能对文章之间的复杂结构和动态关系进行建模。另外,社交媒体中
近些年来,随着信息时代的快速发展以及智能手机和智能手环等设备的普及,采集人体相关数据变得更加方便且准确,因此,基于可穿戴设备的第一视角多模态个体行为识别任务逐渐受到越来越多研究人员的关注。然而,传统的个体行为识别任务由于数据采集成本高而面临着缺乏大规模多模态数据集的困境。本文主要解决基于视觉和传感器数据的小样本多模态个体行为识别任务,它面临两个重大的挑战,一方面,视觉模态的数据通常包含丰富的物体和
在信息爆炸的时代,图像是获取信息的主要媒介,而高分辨率图像因其包含丰富的信息被广泛的用在安防、图像压缩、医疗等多个领域。但是由于硬件、环境等因素,导致现实中获得的大部分图像的分辨率都较低。针对这个问题,图像超分辨率重建技术被提出,该技术旨在利用低分辨率图像重建出对应的高分辨率图像。近年来,随着深度学习的飞速发展,基于深度学习的超分辨率重建技术得到广泛的关注。通过对现有的一些超分辨率重建方法进行深入
文本识别及其相关问题一直都是计算机视觉领域的研究热点,该技术与自动驾驶、盲人辅助、产品搜索等应用紧密连接,早在上个世纪科研者们就着手相关的研究。近年来,随着深度学习的发展,基于深度学习的文本识别方法已经取得了一定的进展,但在复杂场景图像中的文本识别依然是一个严峻的挑战。场景文本图像中有着弯曲的文本形状、不确定的文本方向、文本遮挡、光照不均以及背景干扰等问题,给文本识别带来了很大的考验。本文针对场景
随着数字科技与网络多媒体的快速发展,图像成为用户进行观点发表与情感表达的新兴媒介源源不断地涌向社交网络。理解社交网络中图像所承载的更高层次的情感内容,实现图像情感语义分析及情感分类,已经成为图像标注、基于情感语义的图像检索、网络舆情监测等领域的热点研究内容。基于图像的情感分类就是运用特定算法解析图像中蕴含的情感元素。本文基于深度学习来研究图像情感分类问题,主要工作包含以下两个方面:(1)鉴于从情感
跨模态视觉内容生成是指通过多种模态信息的输入完成视觉内容的生成,它同时涉及多个领域,如计算机视觉、自然语言处理,因此它的实现需要依靠深度学习、图片生成、文本特征编码等多种基础技术。视觉内容包括图片、视频等形式。目前的文本到图片生成模型,难以保证在复杂环境下生成结果的语义一致性与真实性。而视频生成模型方面,直接对视频进行建模的模型表现还较差,主要体现在视频帧的连贯性上以及运动内容的一致性和真实性等问
雾霾是一种传统的大气现象,其中的雾霾、烟和灰尘等颗粒会遮盖大气的透明度。而且由于空气污染(粉尘、雾气和烟雾),在室外环境中拍摄的图像通常也会遇到复杂,非线性和与数据相关的噪声。作为图像恢复技术,图像去雾在计算机视觉中受到了广泛的关注,并有利于后续的高级任务,例如目标检测。图像去雾是计算机视觉和多媒体技术领域的一项基本任务。它在进行去雾的过程中一般面临以下几方面挑战:i)图像中雾度的不均匀分布;ii
随着信息获取技术的快速发展,互联网上产生了海量的多媒体资源,在大数据时代下,这些多模态数据的管理给传统单模态检索方式带来极大的挑战。为了能够更有效地检索出用户需求内容,所以有必要研究快速且精确的跨模态检索方法。由于不同模态数据具有不同空间分布,所以存在异构鸿沟。另外,底层表示和高层语义之间也存在语义鸿沟。如何解决跨模态数据的语义鸿沟和异构鸿沟一直是亟需解决的问题。目前大多数跨模态方法都是学习一个公
视频问答任务(Video Question Answering,Video QA)旨在根据视频和基于视频的自然语言问题推断出正确答案,因此视频问答是解决从海量数据中提取需要视频内容的重要方式之一,是理解精细化视频内容的研究之一,同时也是研究跨模态信息(视频、音频以及文本)融合与推理的关键任务之一。视频是由多帧静态图像组成的动态视觉内容,相邻视频帧之间的整体内容变化往往比较微弱,因此相邻帧中的对象往