论文部分内容阅读
毫米波由于其宽带宽,较少的干扰和较高的方向性,在无线通信领域已经吸引了许多应用开发的兴趣,例如雷达,传感器和无线局域网等。特别地,对在30GHz附近Ka波段的毫米波电路的应用和研究已经越来越得到学术界和工业界的重视。硅基CMOS工艺由于其集成度高和生产成本低,随着工艺一代一代的进步的,在毫米波电路设计中也越来越多的被使用。然而无限追求频谱资源的发掘其作用最终是有限的,所以可以使用空间方法来提高数据速率。相控阵系统广泛应用于雷达和通信系统的波束成形和扫描。接收或发射信号的相对相位由相控阵系统控制,将天线阵列的有效辐射模式引导到特定方向,在期望方向上加强信号并在不期望方向上抑制信号。本文基于IBM 0.13μm CMOS工艺设计了一款工作在Ka波段的全RF结构的四路相控阵接收前端电路,主要涉及的工作有:1.设计了一个工作频带在27GHz~29GHz的Ka波段毫米波低噪声放大器,放大器结构为两级单端共源共栅拓扑结构,并使用源端负反馈电感进行输入匹配,使用了共栅管栅端串联共面波导线代替电感作为电流复用技术的方法改善了增益性能。在TT工艺角,室温下取得的峰值增益S21=23dB,最小NF=4.8dB,频段内 Sll<-10 dB,S22<-10 dB,S12<-45dB。2.设计了一个工作在27GHz~28.5GHz的4比特毫米波无源移相器,使用LC-开关型结构中的Ⅱ型低通网路作为设计基础,共设计了可相移22.5度、45度、90度和180度四个基本移相器。串联这四个基本移相器单元,可以完成从0度到360度的以分辨率为22.5度的相移工作。中心频率27.7GHz处,RMS插损值为1.5dB,在整个频段内都小于1.8dB,在整体工作频段内RMS相移误差都小于11度。3.设计了一个两级4:1片上威尔金森功率合成器,其中传输线使用片上共面波导线,使用顶层金属减小损耗,并使用电磁场仿真工具抽取电磁场参数以供整体电路后仿真使用。4.设计了 一个工作在27.5GHz~28.5GHz的Ka波段单路接收前端相控单元,包括低噪声放大器,4比特无源移相器,增益补偿放大器。RMS增益误差在中心频率处为2dB,在整体工作频段内都小于3 dB。RMS相位误差在整体工作频段内小于15度,已送厂流片。在此单路相控单元基础上,设计了工作在Ka波段27.5GHz~28.5GHz的全RF结构的相控阵接收前端电路,四路接收前端由威尔金森合成器进行信号求和。四路单元具有良好的相位和增益一致性。