CFETR中弹丸深度加料及其对氚燃烧率的影响

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:changsj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
实现氚自持是中国聚变工程试验堆(CFETR)的核心目标之一,为了实现氚自持,CFETR的设计要求氚燃烧率大于3%,同时要确保1GW的聚变输出功率。本文应用OMFIT框架下的集成模拟工作流STEP评估了为同时达到上述两个目标,所需的弹丸加料参数。为此,需要基于弹丸消融和沉积物理模型准确计算弹丸的消融率和沉积剖面。本文基于Parks发展的最新消融模型给出的消融率定标率计算弹丸消融率,并对其进行了改进,包含了磁场对消融率的影响。模型预测CFETR的强磁场环境能大大降低弹丸消融率,增大穿透深度。本文发展了面源沉积模型,解决了现在通用的点源沉积模型在切向注入时的奇异性问题,并将模型推广到了任意注入角度的一般情形,从而适合计算任意弹丸注入位形下的沉积密度剖面。基于Parks等人计算消融云横跨磁场漂移距离的1维压力弛豫的拉格朗日流体模型,本文发展了更适合实时预测的0.5维约化跨场漂移模型。模型预测结果和DⅢ-D实验中的弹丸沉积剖面能够较好符合。对CFETR等离子体中弹丸注入位置的扫描结果表明,HFS中平面注入弹丸对实现深度加料最为有利。将面源沉积模型和0.5维约化跨场漂移模型应用在弹丸消融、沉积程序PAM中,并耦合进了集成模拟工作流STEP中,为输运程序提供粒子源项。应用该工作流评估了 CFETR等离子体中为实现1GW聚变功率、3%氚燃烧率所需的弹丸加料参数。模拟结果指出,若采用具有100μm厚碳包壳的1:1均匀混合弹丸,从HFS中平面注入时,需要的速度约为850 m/s。考虑到包壳增强了弹丸强度,预计上述速度不难达到。如果采用中心是氚、外面是氘、包壳是铍或碳的夹心弹丸,预计可以进一步放松对上述速度的要求。本文的模拟结果指出,为尽可能提高氚燃烧率,最优的弹丸加料方案为,从HFS中平面,采用上述特殊设计的包壳夹心弹丸,以尽可能高的速度进行注入。本文工作从提高氚燃烧率角度,为未来聚变堆中弹丸加料系统的设计提供了重要参考。
其他文献
目前便携式电子设备的电池一般为锂离子电池,由于地球上金属锂资源有限,严重阻碍了锂离子电池在便携式储能设备中的应用。金属钠与金属锂同属一个主族,具有类似的化学性质,因此钠离子电池与锂离子电池在充放电过程中具有类似的的反应机制。而且全球金属钠资源丰富、分布广泛、价格低廉,有望成为锂离子电池后一代二次电池。锡基化合物作为钠离子电池负极材料,具有较高的理论比容量、更低的工作电压(vs.Na+/Na),同时
随着互联网时代的到来以及智能手机和计算机的普及,电子商务在全社会的应用迅速普及,电子商务的发展逐步进入集约创新和迅速发展的新时期。电商产业整体的竞争压力不断增长,各大电商平台之间的竞争愈发激烈。为了竞争市场,各大电子商务平台的商家开展了各种折扣促销活动以吸引新老客户。信息技术的进步和平台的发展使得电子商务平台沉淀了大量的消费记录,还从各种关联渠道低成本地收集了客户的大量隐私数据,比如个人基本信息和
近年来,随着区块链技术日趋成熟,其在金融服务、资源共享、贸易管理等领域受到了越来越多的关注。但是,当前区块链技术的一个缺陷就是交易吞吐率低,不能很好的支持高并发的应用场景。目前针对该问题的研究主要集中在设计优化区块链网络框架、设计改进共识协议或应用其它新技术等方面。本文将从区块链节点部署的角度提高开源区块链框架Fabric的吞吐率。首先,本文针对Fabric区块链框架中的事务处理流程,提出了通过合
互联网信息持续快速增长,以搜索引擎为代表的网络信息检索方式已不满足用户需求,推荐算法及系统在电商、娱乐、新闻等等行业已获得广泛关注和应用。近年来,在经典的基于内容的推荐算法、基于用户的协同过滤推荐算法和基于项目的协同过滤推荐算法的基础上,学者们提出了许多新的推荐算法,包括隐语义模型LFM(Latent Factor Model)、奇异值分解SVD(Singular Value Decomposit
随着人类工业化进程的发展,对于能源的需求也越来越大。传统化石能源的大量开采,造成的环境污染和能源短缺危机已经威胁到人类的健康和生存。发展二次电池是解决这些问题一种有效的方法。钠离子电池因其资源丰富,价格低廉,引起人们越来越多的关注。但是,钠离子的半径要远大于锂离子的半径,同时低功率密度和较差的循环性能使得开发高性能负极材料成为钠离子电池研究的重点。过渡金属氧化物可通过转化反应嵌入Na+,在过渡金属
锂离子电池的发展与迭代始终离不开负极材料的研究,目前在商业领域主要使用的负极活性材料是石墨类碳材料,无法避免的问题是理论容量较低(372 m Ah g-1),因此对于负极材料的研究亟待解决的问题是如何提升容量。红磷具有极高的理论比容量(2596 m Ah g-1),而且储量十分丰富,因此成为锂离子电池负极活性材料的理想选材之一。但是红磷导电性较差(≈10-12 S m-1)和循环过程中体积膨胀巨大
历史上德国在欧洲舞台一直扮演着关键性的角色。20世纪90年代初,冷战结束、德国重新统一,在这一历史背景之下,“文明力量”作为指导德国国家角色定位和外交政策走向的理论应运而生。该理论受到联邦德国政治文化——“克制文化”的影响,反映了德国对国际形势和外交政策的反思与探索,在理论上属于建构主义的角色分析模式。“文明力量”理论从诞生起就是专门用来描述德国外交政策的理论。本文首先对“文明力量”理论的产生、核
高能反向粒子流是强流离子源运行过程中不可避免的难题,而未来聚变反应需要更高功率和更长脉宽的中性束,因此高能反向粒子流是强流离子源大功率长脉冲运行的研究重点之一。本论文主要从理论出发,分析了高能反向粒子流产生的物理机制,并基于强流离子源实验平台开展高能反向粒子流的实验研究,基于诊断手段进行了高能反向粒子流的热沉积分布等分析,开展强流离子源反向粒子流的特性研究,继而开展抑制反向粒子流危害的优化方法研究
在过去的几十年,均相催化剂因其具有优良的催化活性、反应选择性、较少副反应,在化学中应用十分广泛,但均相催化剂存在难以从反应体系中分离,不易回收且催化剂难以实现循环利用,对环境造成较大威胁。为了解决均相催化剂对环境所造成的污染问题,化学工作者提出了负载型催化体系,制备出多相催化剂以减少此类问题。因此多相催化剂慢慢地被科学家所发现。多相催化剂与反应底物易分离,且具有回收循环再使用等众多优点,所以,将均
偏滤器靶板热负荷是关系到未来聚变堆稳态运行的一个重要问题。偏滤器靶板的热负荷由边界等离子体的行为决定。边界等离子体的数值模拟可以更好地理解边界等离子体行为,从而可以更加深入地研究偏滤器靶板热负荷问题。等离子体/中性粒子流体输运程序SOLPS是一个被广泛用于托卡马克边界等离子体(包括最外层闭合磁面之内的部分区域,刮削层(SOL)以及偏滤器区域)模拟的程序包。由于SOLPS中的粒子输运系数Dr,电子热