论文部分内容阅读
研究背景“脑卒中”(cerebral stroke)是一种中枢神经系统急性脑血流循环障碍性疾病,是世界公认的第三大致死性疾病,给患者带来了严重的心理和经济负担,极大地影响患者生活质量。其中缺血性脑血管病占比60%~80%,是脑血管病的主要类型。缺血性脑血管病(ischemic cerebralvascular disease,ICVD)引起的脑损伤包括缺血期原发性损伤和继发脑缺血再灌注损伤(Cerebral Ischemia Reperfusion Injury,CIRI)。在围手术期间,多种手术创伤可导致CIRI的发生,可能会导致远期学习、记忆及认知功能障碍,如体外循环、术中持续低血压导致脑血流灌注不足,神经外科手术损伤脑血管等多种情况。对于缺血期原发性损伤,临床上可在治疗时间窗内给予溶栓等措施对症处理,及时恢复血液供应,但对于继发的CIRI,目前临床治疗手段和疗效远未达到预期。因此,围术期脑CIRI的发病机制及防治措施的研究成为亟待解决的科学问题。CIRI的病理生理过程是一个复杂的级联反应,涉及多种损伤机制,如氧化应激、炎症损伤、能量代谢障碍、线粒体损伤、神经元自噬效应、细胞内钙超载等,这些损伤机制既可以单独作用,也可交替、循环作用,相互间产生前馈、正反馈和叠加作用,互为因果、共同作用,影响疾病的发生发展和转归。氧化应激、炎性损伤及神经元自噬效应在CIRI发生发展过程中的作用已经成为当前研究的热点。正常机体内存在抑制氧化应激的酶系统,如超氧化物歧化酶(superoxide dismutase,SOD)、谷胱甘肽过氧化物酶、过氧化氢酶等抗氧化酶,其中SOD是机体内主要的抗氧化酶、活性氧清除剂。在CIRI发生发展的过程中,大量活性氧(reactive oxygen species,ROS)产生、释放,造成细胞膜磷脂分子中的不饱和脂肪酸过氧化,产生脂质过氧化物,又经过氧化酶作用后生成大量毒性代谢产物,如丙二醛(Malondialdehyde,MDA)等,MDA可使细胞膜磷脂结构发生变化,细胞膜受损严重,引起神经细胞坏死、凋亡。肿瘤坏死因子(tumor necrosis factor,TNF)是炎症反应活动中具有关键作用的细胞因子,被认为是全身炎性反应的始动介质,可直接导致血管内皮细胞功能减退、血管通透性增加、循环阻力降低,并诱导IL-1、IL-6、IL-8等细胞因子及黏附分子的“瀑布样”释放,构成炎性损伤的级联放大效应。转录因子NF-κB是脑缺血再灌注损伤时炎症反应的中心环节,许多研究已证实,NF-κB可通过调节凋亡相关基因的表达实现对细胞凋亡的干预,提高神经细胞的存活率。自噬是机体在缺血和缺氧下产生的压力反应,这个过程是通过囊泡将某些细胞组分转运到到溶酶体得以降解。在真核生物中,自噬不仅与生长发育、代谢和免疫等生理过程有关,还参与脑缺血、心肌缺血和肾缺血等病理过程的发生。近几年来研究表明,脑缺血再灌注过程中自噬被激活,不仅具有神经保护作用,而且参与神经细胞的死亡调节,因此,脑缺血再灌注可以激活自噬。在CIRI引起神经元损伤的不同机制中,不同种类基因蛋白酶的表达对细胞的凋亡或存活的转归有重要的作用:(1)B淋巴细胞瘤(B-cell lymphoma,Bc1)基因家族成员Bcl-2和Bax基因是目前研究比较明确的功能对立的凋亡调控基因;(2)半胱氨酸天冬氨酸蛋白酶(Caspase)家族是另一大类细胞凋亡调控因子,Caspase-3是Caspase激活级联反应中下行最重要的凋亡执行蛋白酶,激活的Caspase-3通过裂解细胞骨架蛋白、DNA依赖性的蛋白激酶及其他Caspase相关底物蛋白等,改变细胞结构,最终导致细胞凋亡的发生;(3)自噬是细胞凋亡的一种方式,其激活主要与ULK复合物的活性有关,而ULK复合物活性主要由哺乳动物雷帕霉素靶蛋白(mammalian target ofrapamycin,mTOR)调控。(4)C-Jun氨基末端激酶(C-Jun N-terminal kinase,JNK)属于线粒体激活蛋白激酶超级家族。JNK信号通路可以通过细胞因子、生长因子、压力和其他因素被激活,并参与各种生理过程,如细胞增殖和分化、细胞凋亡和应激反应。此外,JNK信号通路与自噬的激活密切相关,在神经退行性疾病、缺血性再灌注损伤中也发挥重要作用。低温治疗目前是重症医学科对急危重症患者经常采取的治疗方式之一,围手术期重症患者也多有采用。在降低身体耗能的同时,通过低温抑制中枢细胞损伤、凋亡,起到脑保护作用,可能与以下机制有关:(1)使神经元Bcl-2表达升高,Bax表达降低,显著减少神经细胞凋亡;(2)抑制炎症因子(细胞色素C、ROS、NO)等对caspase-3的激活,使caspase-3表达下降,起到对脑神经细胞的保护作用;(3)促进P-ERK1/2表达,而对JNK表达仅有较小的上调作用,从而提高缺血再灌注神经元存活率;(4)促进P-Akt表达,抑制细胞凋亡。目前国际上通用的低温划分方式是将轻度低温(33~35℃)、中度低温(28~32℃)合称为亚低温(mild hypothcrmia,MH)。经过多年的动物实验研究和临床应用,亚低温技术已经逐渐成熟,广泛应用于心脏骤停、重度颅脑损伤以及脑卒中的治疗,收到了积极的临床疗效。丁苯酚(3-n-butylphthalide,NBP)又名芹菜甲素,是我国脑血管疾病治疗领域第一个拥有自主知识产权的一类新药。大量的国内外研究表明丁苯酚可以阻断缺血性再灌注损伤的多个环节,具有明确的治疗作用:(1)可改善线粒体中Na+/K+-ATPase和Ca2+-ATPase的活性,保护线粒体功能;(2)减少细胞色素C的释放,弱化凋亡蛋白酶的作用;(3)抑制细胞内钙超载;(4)减少兴奋性氨基酸的释放;(5)减轻血脑屏障的破坏程度;(6)改善缺血区微循环和能量代谢;(7)延长溶栓治疗时间窗。鉴于脑缺血再灌注损伤的病理生理机制和治疗研究成果、亚低温治疗的机制和NBP的生物学功能,我们可以合理地推测:相比单独使用MH或NBP治疗,NBP与MH联合使可能具有更强的改善脑缺血再灌注损伤、保护脑组织的效果。右美托咪定(Dexmedetomidine,Dex)作为一种新型具有高度选择性的α2肾上腺素受体激动剂,具有良好的镇静作用,是临床实践中常用于患者的镇静。研究发现,Dex可以通过减少氧化应激和降低炎症介质的释放来减轻大鼠的缺血再灌注损伤。然而,对于术后应用Dex是否对脑缺血再灌注损伤具有保护作用及作用机制尚未明确,本研究另一个重点是Dex后处理通过抑制炎症反应和神经元自噬减轻大鼠脑缺血再灌注损伤的的保护机制。综上所述,本研究对围术期脑缺血再灌注损伤的保护机制研究主要分为两个部分:(1)通过建立大鼠脑缺血再灌注损伤模型,应用MH与NBP联合治疗,检测脑组织中炎性因子的含量,观察神经元形态,检测凋亡相关蛋白的表达,验证NBP与MH联合使用对脑缺血再灌注损伤的保护作用。(2)通过建立大鼠脑缺血再灌注损伤模型,探讨Dex后处理对空间学习和记忆能力、脑梗死区、细胞凋亡的影响,这个过程中海马CA1区域神经元的病理变化,以及可能涉及的JNK信号通路分子机制。第一部分MH和NBP联合作用对大鼠脑缺血再灌注损伤的保护机制目的本研究主要通过建立大鼠脑缺血再灌注损伤模型,应用MH与NBP联合治疗,通过检测氧化损伤和炎症相关因子的含量以及炎症相关蛋白的表达,研究MH和NBP联合应用对大鼠脑缺血再灌注损伤模型的神经保护作用。方法75只SPF级健康雄性SD大鼠(220-250g)由中国科学院上海实验动物中心提供。将大鼠随机分为假手术组、模型组、MH组、NBP组和MH+NBP组,每组15只。NBP组和MH+NBP组大鼠术前给予含NBP(80mg/kg)生理盐水灌胃7天(每天一次),假手术组、模型组和MH组均给予等量生理盐水。药物治疗7天后,采用改良Pulsinelli四血管闭塞法构建大鼠脑缺血再灌注模型。应用0.9%氯化钠溶液(4-5℃)通过20G硅胶管泵入头部进行MH治疗,使海马温度降至(33.0±0.5)℃后,双侧颈总动脉与动脉夹结扎15min,在自然复温前保持低温1h。缺血再灌注8小时后,冰浴收集一部分脑组织,匀浆,取上清液,用MDA检测试剂盒,SOD检测试剂盒,NO检测试剂盒和NOS检测法测定MDA、SOD、NO和NOS含量。使用酶联免疫吸附测定(ELISA)试剂盒检测脑组织中炎性因子IL-6和IL-1β的含量。一部分脑组织浸泡于10%福尔马林溶液中固定,进行石蜡包埋和常规切片。通过Nissl染色,在光学显微镜下观察脑组织神经元细胞的形态。采用免疫印迹测定Bcl-2、caspase-3、p-NF-κB、p-mTOR、mTOR等凋亡相关蛋白的表达量及磷酸化水平。结果1.脑组织中氧化应激因子含量变化采用试剂盒检测相应氧化应激因子,结果表明MH,NBP和MH+NBP治疗均能降低脑缺血再灌注损伤时的氧化应激因子MDA,NO,NOS的含量,增加SOD的含量,而且MH+NBP抑制脑缺血再灌注引起的氧化损伤的作用优于单独的MH和NBP治疗。2.脑组织中炎症因子含量变化ELISA检测结果显示,与模型组相比,MH组,NBP组及MH+NBP组IL-6和IL-1β含量均有不同程度的降低,MH+NBP组IL-6和IL-1β含量明显低于模型组。3.脑组织中神经元细胞结构变化尼氏染色结果显示,MH组和NBP组神经元数量较模型组明显增加,细胞排列规则,部分尼氏体丢失。与模型组比较,MH+NBP组神经元数量明显增加,且MH+NBP组与MH组、NBP组相比,神经元数量有所增加,神经元细胞结构完整,并且富含尼氏体。4.自噬相关信号m-TOR蛋白的活化Western Blot检测结果显示,采用MH和NBP联合治疗后p-mTOR蛋白表达水平显著降低。5.凋亡相关蛋白Bcl-2和Bax表达的变化Western Blot检测结果显示,采用MH和NBP治疗后较模型组Bcl-2蛋白表达水平增加,Bax蛋白表达显著降低。采用MH和NBP联合治疗后Bcl-2蛋白表达水平进一步增加,Bax蛋白表达降低。6.炎症相关信号NF-κB蛋白的活性Western Blot检测结果显示,与模型组相比,NH和NBP组p-NF-κB蛋白水平显著降低,NH+NBP组进一步降低p-NF-κB蛋白水平。结论1.MH和NBP联合治疗较单独使用MH和NBP治疗能更好地抑制脑缺血再灌注引起的氧化损伤和炎症反应。2.MH和NBP联合治疗可以减少脑缺血再灌注引起的大鼠脑神经细胞损伤,这种保护作用优于MH和NBP单独治疗。3.NH和NBP联合治疗可以通过抑制mTOR和NF-κB蛋白的磷酸化,促进Bcl-2表达和抑制Bax表达,对脑缺血再灌注损伤大鼠起到神经保护作用。第二部分右美托咪定后处理对大鼠脑缺血再灌注损伤的保护机制目的本研究通过建立大鼠脑缺血再灌注损伤模型,探讨Dex后处理对大鼠空间学习和记忆能力、脑梗死区、细胞凋亡的影响,这个过程中海马CA1区域神经元的病理变化,以及JNK信号通路的蛋白表达,为术后减轻脑缺血再灌注损伤的治疗提供理论依据。方法180只雄性健康成年SD大鼠,随机分成6组(每个治疗组30只大鼠),假手术(Sham)组,缺血再灌注损伤(I/R)组,右美托咪定后处理(Dex)组,JNK抑制剂(SP600125)组,右美托咪定后处理+JNK激动剂(Dex+Anisomycin)组,阳性药物尼莫地平对照(Nim)组。采用缝合闭塞法建立大鼠中脑动脉闭塞(MCAO)模型。脑缺血再灌注24小时后,进行莫里斯水迷宫试验以评价大鼠的空间学习能力和记忆能力。取每组6只大鼠脑组织,切片,利用TTC染色检测缺血脑区面积。取每组6只大鼠脑组织,浸泡于4%多聚甲醛固定,切片,进行TUNEL染色,检测脑组织中凋亡细胞的数量,通过HE染色观察CA1脑区的病理变化。取6组大鼠的血清,利用ELISA试剂盒测定血清中TNF-α,IL-6,IL-1β的含量。取每组6只大鼠脑组织,浸泡于2.5%戊二醛固定,通过透射电镜观察海马CA1区神经元的结构变化。提取每组6只大鼠脑组织的RNA,利用qRT-PCR检测自噬相关基因的表达。提取每组6只大鼠脑组织的总蛋白,利用免疫印迹技术检测自噬相关蛋白及JNK磷酸化水平。结果1.行为学测试利用莫里斯水迷宫测试对大鼠的空间学习和记忆能力进行评价。与Sham组相比,其他组逃逸潜伏期(EL)明显延长,而跨平台时间和停留原始平台时间减少。与I/R组相比,Dex组、SP600125组、Dex+Anisomycin组和Nim组EL明显缩短,而跨平台和平台时间显著增加。与Dex组相比,EL显著延长,而跨平台和平台象限时间在Dex+Anisomycin组中显著缩短。2.脑组织的梗死区域TTC染色测定脑组织梗死面积。在I/R组、Dex组、SP600125组、Dex+Anisomycin组和Nim组中观察到不同大小的白色梗死区域。大鼠脑组织的梗死区以梗死区/非梗死区域的百分比表示。与I/R组相比,Dex组、SP600125组、Dex+Anisomycin组和Nim组脑组织的梗死区域显著减少。与Dex组相比,Dex+Anisomycin组的白色梗死区域增加。3.大鼠海马CA1区神经元凋亡TUNEL测定用于检测大鼠大脑海马CA1区神经元凋亡。与Sham组相比,其他组显示阳性凋亡的神经元数量显著增加。与I/R组相比,Dex组、SP600125组、Dex+Anisomycin组和Nim组阳性凋亡的神经元数量有不同程度的明显下降。与Dex组相比,Dex+Anisomycin组神经元凋亡数量明显增加。4.大鼠海马CA1区域神经元的病理变化通过HE染色观察大鼠海马CA1区域神经元的病理变化。与Sham组相比,其他组神经元表现出不同程度的形态异常。与I/R组相比,Dex组、SP600125组、Dex+Anisomycin组和Nim组神经元病理变化程度降低,Dex组、Nim组和SP600125组之间无显著差异,而Dex+Anisomycin组神经元病理变化程度稍重。5.血清中炎症因子的变化ELISA测定大鼠血清中炎症因子(TNF-α、IL-6和IL-1β)的表达水平。与Sham组相比,其他组中TNF-α、IL-6和IL-1β的含量显著增加。与I/R组相比,Dex组、SP600125组、Dex+Anisomycin组和Nim组中TNF-α、IL-6和IL-1β的含量显著下降。与Dex组相比,Nim组与SP600125组的TNF-α、IL-6和IL-1β水平无显著差异,而Dex+Anisomycin组TNF-α、IL-6和IL-1 β的含量增加。6.海马CA1区域的自噬效应通过透射电镜观察海马CA1区域的自噬效应。电子镜下细胞中出现自噬小体或吞噬细胞被认为是自噬的形态特征。与I/R组相比,自噬程度有不同程度地降低,Dex组、SP600125组、Dex+Anisomycin组和Nim组水肿和空泡化程度降低。Dex组、Nim组和SP600125组之间没有显著差异,而Dex+Anisomycin组自噬程度稍重。7.大鼠脑组织Beclin-1,Caspase-3,LC3 mRNA和蛋白质的表达通过qRT-PCR检测大鼠脑组织自噬相关mRNA的表达。与Sham组相比,其他组Beclin-1、Caspase-3、LC3的mRNA表达显著增加。与I/R组相比,Sp600125组、Dex+Anisomycin组和Nim组中Beclin-1、Caspase-3、LC3的mRNA表达显著减少。Dex组、Sham组和SP600125组之间无显著差异,而Beclin-1、Caspase-3、LC3的mRNA表达在Dex+Anisomycin组略高。免疫印迹结果显示,与Sham组相比,Beclin-1、Caspase-3和LC3Ⅱ/Ⅰ的蛋白质表达在其他组(P<0.05)中明显升高,总体变化趋势变化与qRT-PCR结果一致。8.JNK信号通路活性的检测免疫印迹结果显示,与Sham组相比,其他组p-JNK1的蛋白表达明显上升,JNK1总含量无显著变化。与I/R组相比,Dex组、SP600125组、Dex+Anisomycin组和Nim组中p-JNK1的蛋白质表达显著减少。与Dex组相比,p-JNK1的蛋白质表达在Dex+Anisomycin组中略有上升。结论1.右美托咪定后处理和JNK通路抑制剂治疗可改善大鼠脑缺血性灌注损伤引起的学习和记忆功能障碍,减少脑组织梗死区域面积。2.右美托咪定后处理和JNK通路抑制剂治疗能减轻大鼠脑缺血性灌注损伤引起的海马CA1区域神经元的阳性凋亡和病理变化。3.右美托咪定后处理能够减少大鼠脑缺血性灌注损伤引起的炎症反应和自噬作用,可能与抑制JNK通路活化有关,并影响炎症因子和自噬相关蛋白质的表达。