【摘 要】
:
由于近年人与自然之间矛盾的日益突出,对此,我国提出“碳达峰、碳中和”的工作目标,这无疑将掀起一轮新的能源领域的革新以及发展契机。在一众储能器件中超级电容器因其一系列优势强势突围成为当今能源储存领域的明星。但是,目前市场上的碳基超级电容器因其成本高,能量密度低等问题限制了其进一步广泛应用。基于此,本文重点研究并制备了廉价、能量密度高的电极材料。主要研究内容和结果如下:1、使用酒糟为原料,通过前期碳化
论文部分内容阅读
由于近年人与自然之间矛盾的日益突出,对此,我国提出“碳达峰、碳中和”的工作目标,这无疑将掀起一轮新的能源领域的革新以及发展契机。在一众储能器件中超级电容器因其一系列优势强势突围成为当今能源储存领域的明星。但是,目前市场上的碳基超级电容器因其成本高,能量密度低等问题限制了其进一步广泛应用。基于此,本文重点研究并制备了廉价、能量密度高的电极材料。主要研究内容和结果如下:1、使用酒糟为原料,通过前期碳化和KOH活化,制备出系列酒糟基多孔碳材料。多孔碳材料JKPC-4-700具有呈层次级分布的孔径结构,其比
其他文献
零售企业是城市商业经济活动中连接生产端与消费端的纽带与桥梁。其空间分布与区位选择不仅影响着自身的经营收入,还左右着基础生产资料的配置,并在调整城市规划布局、优化区域经济结构方面扮演着重要角色。本文选取重庆市主城区零售企业为研究对象,首先建立区域内零售企业POI数据的地理信息数据库;然后采用空间分析法勾画全部零售企业的空间布局,并对不同行业的零售企业空间分异特征进行区分;接着建立零售企业区位选择影响
有机太阳能电池作为一种极具发展前景的可再生能源技术,具有质轻、半透明、柔性、环保等优点。通常,有机太阳能电池的活性层主要由一种给体和一种受体组成。而三元有机太阳能电池通过引入第三组分来增强活性层的吸光能力或优化微观形貌,进而提高激子解离和电荷传输性能,最终提高能量转换效率(PCE)。三元有机太阳能电池不仅保持了二元有机太阳能电池简洁的制备工艺,还可以通过第三组分增强对光子的俘获来提升器件的光电性能
钕铁硼永磁体凭借独特的综合磁性能已被广泛应用于信息技术、医疗器件以及日用电器等方面;随着科学技术的不断发展,钕铁硼磁体的生产量也在持续增加。而钕铁硼磁体在生产加工的过程中会产生大量的废料;与此同时,先前的钕铁硼永磁体产品也在逐渐失效报废;这均是废旧磁体的主要来源。这些废旧钕铁硼磁体中的稀土含量大于初始矿石中的稀土含量,所以通过技术手法对其进行回收再制备有着重要的经济价值。因此,本论文通过晶界添加稀
由于钠的资源广、价格低,钠离子电池成为未来的新能源存储器件研究重点。在众多负极材料的选项中,金属锡因为其容量较高而成为研究热点之一。但是,金属锡在钠离子存储过程中存在较大的体积变化,导致其较差的循环稳定性。本论文针对这一问题,主要通过纳米化、合金化和碳复合相结合的手段,设计和合成出多种Ni-Sn@C纳米复合材料,提高锡基负极材料的电化学性能,主要研究内容如下:(1)以廉价的氯化钠为模板,采用简单的
有机太阳电池具有柔性、半透明、质地轻盈等诸多优点而被认为是一种极具潜力的太阳电池技术。基于P-型聚合物给体和N-型聚合物受体为活性层的全聚合物太阳电池(All-Polymer Solar Cells,All-PSCs)是有机太阳电池中的一个重要分支,其因出色的水、氧和机械稳定性等受到了广泛关注。活性层沉积工艺是影响形貌,决定器件性能的关键因素。在All-PSCs中,给、受体聚合物间的强作用力会明显
随着经济和社会的迅速发展,能源危机引起了极大的关注。设计和开发绿色可持续能源和先进的储能设备已引起广泛的关注。超级电容器是一种介于化学电池和传统电容器之间的电化学储能器件,可以提供高功率密度、长周期寿命和高可靠性。然而,由于其能量密度较低、窗口电压较窄等系列问题也使得超级电容器的发展受到了较大的限制。因此,我们将针对这些问题进行了一系列的探究和实验。具体研究内容如下:(1)以生物质银杏壳作为碳源,
风能作为一种可再生能源,在能源和电气工业领域的大规模部署促使研究者对数据驱动的风电监测控制系统进行研究。目前监控与数据采集系统广泛应用于风力发电机组性能评估、状态监测、异常检测等应用场景的数据采集,其中,风电曲线描述了风速与功率的关系,是风力发电机组性能和工况分析的重要技术指标。但是在实际环境中,由于风速和风向的变化导致风电曲线数据包含不同类型的异常数据,这会对风力发电机运行状态和特性的分析产生不
非侵入式负荷监测(NILM)通过分析用户电力入口处的数据实现对户内负荷种类、运行状态及能耗等信息的监控,是智能电网实现状态全面感知与信息双向流通的关键技术,具有广泛的应用场景及重要的社会价值。而近年来人工智能领域中的深度学习技术凭借其出色的性能引起了各行各业的广泛关注。为此,本文将两者相结合,开展了基于深度学习的非侵入式负荷辨识和分解相关算法研究并开发了一套非侵入式负荷监测原型系统,具体工作如下: