论文部分内容阅读
关于Sn的Specht-模与对称逆半群表现的一些研究
【摘 要】
:
在结合代数表示论中,群表示论是一个很重要的研究分支,其中构造一个群的不可约表示,并且研究其结构和相关性质是最基础也是最重要的研究课题.同样地,在半群研究领域中,半群的表现也是很重要的一个研究内容.本文内容主要分为两部分:第一部分讨论了对称群Sn在复数域上的不可约表示,也称Specht-模.给出了利用Young表构造Specht-模的过程,在已知的构造方法和构造的不可约表示基础上,进一步研究了 Sp
【出 处】
:
兰州大学
【发表日期】
:
2021年01期
其他文献
癌症严重威胁人们的健康,而小分子化疗药物有着诸多局限性,传统纳米药物递送体系也存在低药物含量,高药物渗漏的问题,基于肿瘤细胞微环境与正常生理环境间差异可以设计出通过动态共价键键接的纳米药物自递送体系,这些体系虽然一定程度的降低了药物渗漏,但仍然不能完全避免,且由于化疗药物通常键接在纳米载体的侧面或尾部,药物含量较低。为解决这些问题,需要一种可以在特定部位释放的、在保持较高药物含量的同时具有尽可能低
学位
本文研究了变系数线性耦合的非线性薛定谔方程组这一模型来自非线性光学,用来描述双芯光纤中两个纤芯的相速度差为零的光波的传输动力学,其中βj1(j=1,2)是第j个纤芯的群速度参数,βj2是第j个纤芯的色散参数,γj是j个纤芯的非线性参数,c(t)是两个纤芯之间的线性耦合参数.这些参数在实验上是可调控的.我们证明了当β11(t)=β21(t),β12(t)=β22(t),γ1(t)=γ2(t),c(t
学位