【摘 要】
:
随着社会的发展,对能源的需求不断增大,人们对风能,太阳能等新型可再生能源进行了很多研究并投入了应用,但可再生能源的电源系统往往存在负载扰动大,供电不稳定,准确建模困难等问题。而在现代的各种电子产品设计中,需要体积更小,质量更高的稳定电源。开关电源DC-DC变换器可以通过提高工作频率的方式来减小电路中储能元件体积,使得DC-DC变换器的体积更小,质量更轻,因此在各个领域受到了广泛的应用。由于滑模控制
论文部分内容阅读
随着社会的发展,对能源的需求不断增大,人们对风能,太阳能等新型可再生能源进行了很多研究并投入了应用,但可再生能源的电源系统往往存在负载扰动大,供电不稳定,准确建模困难等问题。而在现代的各种电子产品设计中,需要体积更小,质量更高的稳定电源。开关电源DC-DC变换器可以通过提高工作频率的方式来减小电路中储能元件体积,使得DC-DC变换器的体积更小,质量更轻,因此在各个领域受到了广泛的应用。由于滑模控制具有动态响应快,对于非线性系统的不确定性具有很强的鲁棒性的特点,被广泛应用于DC-DC变换器的控制中。传统的滑模控制系统处于稳态时,系统状态会在滑模面附近进行高速切换,不仅难以确定电路的工作频率,还会给DC-DC变换器电路引入大量的电磁噪声。为了限制传统滑模控制过高的开关频率,常常引入滞回参数,将开关频率限制在一定范围以内。但滑模控制开关频率不确定的问题并没有得到解决,当变换器电路参数变化或者负载受到扰动时,开关频率不能保持恒定。使得滤波电路的设计十分困难。因此,需要对DC-DC变换器进行固定频率的滑模控制。在DC-DC变换器控制中,寄生参数也会对控制器的控制效果产生不确定的影响,为了实现更好的控制,本文对同步buck变换器输出电容的寄生参数在二阶滑模控制器中的影响做了详细的分析,在此基础上,结合二阶滑模控制器中开关频率f和调节开关频率的滞回参数δ之间的关系,提出了一种二阶滑模固定频率控制的方法,通过控制滞回参数使buck变换器的开关频率稳定在期望值附近,不但调节速度快,而且能够克服同步buck变换器输出电容上寄生参数的影响。论文的主要的研究内容和工作如下:①针对二阶滑模控制器,在不考虑寄生参数的情况下,分析buck变换器中开关频率f和滞回参数δ之间的关系;②分析buck变换器输出电容上寄生参数对二阶滑模控制器的影响。针对寄生电感可能造成的超调,提出了一种改进的二阶滑模控制器,有效地抑制了输出电压的超调量;③在考虑寄生参数的情况下,根据buck变换器开关频率f和滞回参数δ的对应关系,提出了一种滞回参数的调节方法,实现对buck变换器的固定频率控制。仿真结果表明,提出的算法不但能够实现变换器固定频率的控制,而且具有较好的鲁棒性。
其他文献
生鲜电商的发展逐渐成熟,消费者通过线上消费生鲜产品频次增加。但随着生活水平的提高,消费者对生鲜产品的品质和配送时效的重视度越来越高,因此,为满足消费者的个性化需求,生鲜产品由传统的单仓或多个配送中心发全国逐渐过渡到社区配送的前置仓模式。但前置仓选址和容量多依赖于经验决策,使得管理难度大、供求不匹配、配送成本较高,这不利于生鲜电子商务的发展。因此,科学合理地安排前置仓、优化库存能力显得尤为重要。本文
大量研究与工程实际表明,材料的微观结构显著影响材料的力学性能。随着氮化硼纤维在航空、航天、电子、核工业及复合材料等领域的广泛应用,进一步揭示氮化硼纤维的宏观力学性能与其内部微观结构的相互关系具有重要的工程意义。氮化硼纤维内部存在三种相成分,依据其分子在空间上的排布规律可分为非晶态氮化硼(Amorphous boron nitride,a-BN)、半结晶态氮化硼,也称乱层氮化硼(Turbostrat
多孔结构作为轻量化设计手段之一,在航空航天、汽车模具、医疗行业等领域被广泛应用。近年来,研究者不断探索新的多孔结构设计方法,其中对功能梯度多孔结构的研究最多,该结构可以通过体积分数梯度变化来实现对其性能的控制。因此,本文提出一种参数化的多孔结构设计方法,为后续更多多孔的研究提供新的思路。以选择性激光熔化技术(Selective Laser Melting,SLM)为代表的增材制造技术不仅能够很好的
21世纪随着社会经济的发展,人类对能源的需要越来越多。目前使用的能源大多数都是煤、石油、天然气等不可再生的化石能源,而这类能源的使用会产生严重的污染问题。为了解决这些问题,人们开始寻找新的绿色环保的可再生能源,如风能、太阳能和潮汐能等;但是这类能源存在时间歇性。为了有效利用这些新能源,则需要大量的储能器件及系统。超级电容器作为一种新型的高性能储能器件,具有功率密度大、使用寿命长和应用范围广等优点,
高功率密度斜齿轮传动在航空传动系统中应用广泛,其有着质量轻、体积小、传递功率大等显著特点,这使得传动系统的发热问题变得尤为明显,在运行时各个齿轮之间的相对摩擦会产生大量的热,同时齿轮高速旋转时易造成齿面润滑和冷却困难,使得齿轮产热过大,冷却不佳,最终导致齿轮温度过高,易出现胶合等等失效情况。因此,研究高功率密度斜齿轮的高效润滑和高效冷却对于控制齿轮温升、提高齿轮抗胶合能力、延长齿轮使用寿命有着重要
近年来,城市发展建设越来越重视民生福祉,党的十九大报告也将“以人民为中心的”发展思想作为新时代党和国家的基本方略。以人民为中心的城市人居环境建设要关注城市居民的需求和感受,提升城市品质,满足居民多元化的人居需求。而当前城市建设存在忽视生态景观品质的问题,表现为生态指标不断上升而居民感知未能同步提升。因此,重视城市居民的生态感知和生态服务体验,实现城市生态建设“人本位”思想转变,意义重大。本文尝试建
电动车低能耗、低污染的特点以及全天路权开放和政府补贴政策共同促进了电动车在多个领域的快速发展,其中一个重要领域为医药冷链配送。但由于电池容量和基础设施的限制,纯电动冷藏车在配送途中存在续航里程短,充电和等待时间长的特性。如何在满足纯电动冷藏车的充电需求下,实现低碳下的利润最大化,成为医药冷链配送企业需要解决的新问题。基于此,本文提出了纯电动冷藏车的医药配送路径优化模型,该模型旨在实现包含环境和经济
二吡咯烯低聚物由于其能够为金属离子和有机分子提供结合位点,而受到广泛关注。其中二吡咯的硼络合物(BODIPY)是研究最多的二吡咯络合物之一。BODIPY在可见光区域具有很强的吸收及荧光量子效应,同时其具有较高的化学稳定性以及相对长的激发态寿命,使得其在荧光传感器、染料敏化太阳能电池等领域受到广泛的研究。同时卟啉是研究最广泛的含氮类大环芳香族化合物,由于其在紫外波长区间有优良的吸收和发射性能,使得其
在能源危机、环境污染和严苛的汽车尾气污染物排放法规的大背景下,混合动力汽车在提高燃油经济性和减少排放等方面具有显著优势;另一方面,智能交通系统的快速发展实现了混合动力汽车的网联化,将车联网技术与混合动力汽车的能量管理技术相结合,可以大幅度改善车辆的整体性能。本文针对一辆车联网环境下的混合动力汽车,在跟车场景下进行了考虑污染物排放的多目标能量管理优化,具体研究内容如下:(1)对一辆单轴并联式混合动力