掺杂碳材料的合成与改性用于电催化氧还原制备过氧化氢

来源 :中国科学院大学(中国科学院宁波材料技术与工程研究所) | 被引量 : 0次 | 上传用户:xingfuli2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
过氧化氢(H2O2)作为一种绿色化学品被广泛应用在各个行业。传统的蒽醌氧化制备方法却存在高耗能,污染,产生大量有毒废物的缺点并且所制备的高浓度过氧化氢在运输以及存储时存在爆炸风险。氧还原反应(ORR)制备过氧化氢受到人们的广泛关注,由于其反应环境温和,反应物只需空气便可能够现场制备过氧化氢,避免存储以及运输时的风险。目前我们非常需要寻找一种拥有高活性以及高选择性的电催化剂用于2e-ORR。例如Pt-Hg,Pd-Hg等贵金属催化剂都是过电位较小和选择性高的优异催化剂,但是这类催化剂的大规模运用已经被稀缺性以及昂贵的价格所限制。相比之下,碳基材料由于储量丰富、成本低、结构和表面性质的可调性,被赋予广泛应用前景。但是纯碳材料的低活性使它们不适合于过氧化氢的生产。通过掺杂杂原子,可以促进碳材料表面结构和电子的缺陷,从而呈现更多的活性位点。基于此,本论文致力于开发廉价、高选择性、高活性的掺杂碳基材料,探究材料性质与催化氧气还原活性之间的关系。一、通过一步煅烧ZIF-8前驱体制备氮掺杂碳作为过氧化氢电合成催化剂。在第二章中,我们制备了菱形十二面体形态的氮掺杂碳。电化学测试结果显示在碱性和酸性介质中,制备的NC-900-ZIF材料催化氧气还原分别表现出90%和70%以上的H2O2选择性。其中,在0.1 M KOH中,NC-900-ZIF催化ORR的起始电位为~0.81 V(vs.RHE);在50 mAcm-2电流密度下,H2O2的生成速率为2.532 mol gcat.-1 h-1。二、我们利用简单金属与有机配体的络合作用制备前驱体,热解后制备了 N,S共掺杂碳层包覆ZnS材料(ZnS@C)。得益于ZnS与碳材料之间的电子耦合作用,在碱性环境中,ZnS@C在较宽的电位范围(0.40-0.80 V,vs.RHE)内表现出~90%的H2O2选择性。与酸处理去除硫化锌后的样品ZnS@C-acid对比,在所测全pH电解液中,ZnS@C均表现出较高的过氧化氢选择性,表明ZnS的存在可以促进共掺杂碳层催化氧气二电子还原生成过氧化氢。进一步的过氧化氢还原实验表明外层共掺杂碳催化氧气还原反应主要是2e-+2e-的四电子过程。在25 mA cm-2电流密度下,ZnS@C选择性生成过氧化氢电子法拉第效率可达93.7%。
其他文献
有机太阳能电池(OSC)由于便携,柔性,可大面积制备等多种优点,已经受到越来越多的关注。在有机太阳能电池中,给体与受体材料对于整个器件性能至关重要,通常可以利用有机结构设计的灵活性,调整烷基链、共轭长度以及特殊官能团等达到对有机太阳能电池效率,稳定性等多个方面的提升。经过多年的发展,尽管有机太阳能电池的光电转换效率取得较大突破,但是其稳定性以及复杂的合成步骤一致是其商业化过程中需要克服的难题。本论
学位
脉络膜是位于视网膜与巩膜之间的血管结构,负责为外视网膜输送氧分与其它物质。脉络膜形态结构的变化与多种疾病的病理过程存在相关性,包括全球不可逆致盲的首要病因——年龄相关性黄斑病变、和第二大病因——青光眼等。光学相干断层扫描(OCT)是一种非侵入的三维成像技术,可以获得高分辨率的眼底图像,现已成为眼科检查的重要手段。然而,OCT一次成像可生成大量二维断层扫描图,阅片过程耗时长,且诊断结果的准确性高度依
学位
太阳能海水淡化是一项能够同时解决“能源危机”与“淡水危机”两大难题的绿色可持续技术。近年来,开发高效光热转换的材料和高能量利用率的结构装置是提高太阳能-水蒸发速率的主要手段。影响水蒸发速率的因素主要有温度、水/空气界面面积和环境中水的蒸汽压(即相对湿度),在不考虑环境因素的情况下,静态光热水蒸发时温度主要取决于材料的光热转换效率和热能利用率,水与空气的界面面积则依赖于装置的结构。然而,目前的研究多
学位
酯类基础油是一种高性能、多功能和环保的高端合成油,且随着主链长度和侧链数目增加,酯类基础油的粘度和粘度指数显著提高。因此酯类基础油具有很大的发展潜力,例如性能优异的三羟基丙烷酯和季戊四醇酯已经被大规模的应用,但是这些酯类的原料大都来自石油基产品。而从生物质出发制备的酯类润滑油基础油由于具有良好的生物降解性、可再生性和绿色环保的特点,被认为是优异的下一代润滑油基础油。5-羟甲基糠醛(HMF)可以通过
学位
无线传感器网络(Wireless Sensor Network,WSN)是由随机部署在特定区域中的大量传感器组成,通过无线媒介进行监测和相互通信。WSN不依赖于任何固定设施,可以及时和全面地在无人值守的环境下采集、聚合数据信息,进而受到越来越多的关注。它覆盖了各种应用领域,包括环境监测、健康医疗、国防军事、农业生产和智能家居等。但是,WSN存在于一个开放和协作的环境当中,网络本身存在许多安全漏洞,
学位
机器人示教学习是机器人操作技能学习的一种方式。未来,机器人将成为人类社会生活不可缺少的一部分,机器人也将会被要求完成难度更高的任务,使用传统的示教编程方法将会极大地增加机器人工程师工作负担。为了提高机器人在复杂任务场景下的适应能力,减少机器人工程师的手动编程的工作量,需要机器人具有自我学习能力,能够从任务示教的过程中学习任务技能与动作技巧,并将其推广到新的任务场景。本文主要针对机器人示教学习领域中
学位
含硒化合物和含硫化合物广泛存在于天然产物、药物、农药和材料之中,因此开发简单有效的构建C-Se键和C-S键的合成方法一直是化学家们研究的热点,数十年来已经发展出了诸多可靠的策略。但这些方法通常需要一些较为苛刻的条件如高温、预先官能团化的底物或严格的无水无氧条件等。其中,过渡金属催化的C-H活化策略由于避免了底物的预先官能团化步骤而备受青睐。然而,这类策略通常面临两个主要问题,一是如何高选择性地活化
学位
在现实中,图像的获取过程往往受相机质量、成像环境等条件限制,产生低质量图像,或在图像传输中出现失真。而这些图像会极大地制约用户或者图像检测算法获取图像中信息的能力。对低质量图像进行增强,将其转化为高质量图像,有着广阔的应用前景。本课题是基于生成对抗神经网络开展的图像增强算法研究,将生成对抗神经网络应用于水下图像增强和屏幕内容图像增强两个方面。主要工作如下:(1)首先总结了现有水下图像增强研究中主流
学位
随着对时效镁合金的室温变形过程研究的深入,不可避免地要涉及如何认清析出相与变形孪晶交互作用实质这一关键性问题。由于目前对镁合金中分布密度不同、形态各异的析出强化相的认知还不具有统一性,加之镁合金中变形孪生模式的多样性以及孪生机制的复杂性,因而对变形孪晶与析出相之间的相互作用关系尚不明确。一直以来这都是一个值得关注却难以解决的重要问题。揭示镁合金中变形孪晶在析出相存在条件下的生长、孪晶与析出相的相互
学位
近年来,计算机科学技术飞速发展,深度神经网络随之兴起,基于人脸图像的识别技术已经成为一个研究热点,引来国内外学者的关注。而面部表情承载着人类的情绪状态,是人类表达自己最强大的信号之一,因此,表情识别技术研究有着非凡意义和广泛的应用前景。然而,在复杂场景下的人脸图像模糊、冗余信息的干扰、表情的相似性等问题,会造成表情识别不准确,且实际应用效果也会受到很大影响。针对这些缺陷,本文开展了基于深度学习的表
学位