论文部分内容阅读
为了研究悬浮培养的红豆杉细胞对鼓泡引起的流体剪切环境的防御应答机制,通过对三种不同鼓泡孔径的反应器的湍动剪切力进行定量分析,探讨了鼓泡引起的红豆杉细胞基因转录、蛋白酶表达以及磷脂代谢水平上的变化,试图为工程化放大研究提供一些理论依据。采用激光多普勒测速方法,分别对3个不同鼓泡孔径(1.0mm、1.5mm和2.0mm)的反应器内的湍动剪切力进行了研究。通过计算比较反应器不同区域的湍动剪切力场,发现轴向雷诺应力最大,其数值在2.0 N/m2到7.2 N/m2之间;反应器内三个区域的湍动剪切力的大小顺序为:气液界面处>鼓泡通气口以下>鼓泡塔主体区域;对比3个不同鼓泡孔径的反应器发现,靠近气液界面处湍动剪切力随着鼓泡孔径的减小而增大。从流体剪切力的角度证实了气液界面是细胞损伤的主要区域,而且小鼓泡孔径引起的流体湍动程度最强。运用RT-PCR方法,探讨了鼓泡对紫杉醇合成相关的3个基因(hmgr、dxr和ts)的转录水平的影响。在短期培养过程中,与摇瓶培养的细胞相比,鼓泡塔中hmgr和dxr基因的转录水平分别降低了53.1%, 41.5%(1.5mm鼓泡孔径)和64.2%, 53.8%(1.0mm鼓泡孔径),ts基因没有显著变化;在长期培养过程中,3个基因的转录水平在培养的6-11天,转录水平迅速增加,以后逐渐降低,hmgr在第11天的转录活性分别达到了摇瓶的1.59倍(1.5mm鼓泡孔径)和1.31倍(1.0mm鼓泡孔径),同时期dxr的转录活性分别为摇瓶的1.51倍(1.5mm鼓泡孔径)和1.31倍(1.0mm鼓泡孔径),ts的转录活性分别为摇瓶的1.47倍(1.5mm鼓泡孔径)和1.26倍(1.0mm鼓泡孔径)。研究了鼓泡孔径分别为1.0mm和1.5mm的反应器中剪切环境胁迫下引起的细胞防御应答。结果表明,反应器中细胞在8h后产生活性氧的迸发,随后在11h后NO浓度达到高峰,PAL酶活与LOX酶活分别在16h和20h达到最大值,说明活性氧、NO、PAL和LOX都参与了细胞对机械环境的应答。与1.5mm鼓泡孔径的反应器相比,1.0mm鼓泡孔径反应器中细胞在活性氧、NO、PAL酶活以及LOX酶活水平都高,说明细胞在小鼓泡孔径引起的剪切环境胁迫下的防御应答反应更为明显。运用液质联用技术(LC/ESI-MS),分析了1.0mm和1.5mm鼓泡孔径的反应器与摇瓶培养的红豆杉细胞在磷脂代谢水平上的差异。对提取的33个磷脂样本进行了主成分分析,发现摇瓶培养与鼓泡塔反应器培养48h的细胞可由第一主成分和第二主成分进行很好的聚类,反应器培养96h的样本与摇瓶样本的聚类距离更远;对潜在的生物标志物进行了二级质谱扫描,确定了这些磷脂的分子结构,主要有11种PA磷脂分子和4种PC磷脂分子,与摇瓶培养相比,反应器培养中部分磷脂PC含量明显降低,而PA含量则明显增加;小的鼓泡孔径引起的磷脂代谢水平差异更加明显,而PA的增加被证明与红豆杉细胞中次生代谢产物紫杉醇的增加有关。