论文部分内容阅读
光影响植物生长发育,并参与了植物体中生理反应的诱发及生长发育的控制过程。目前,光谱能量分布作为重要物理影响因子已广泛应用于植物组织培养中的植物光形态建成及各种反应机理的研究。植物组织培养中的主要光源是荧光灯,但其光谱分布不能完全符合植株生长需求,发热量大,生物能效较低,导致很大程度上的电能损耗和浪费。发光二极管(Light emitting diodes,LED)可以发射出不同光谱能量分布的光源,可用较低的成本调控植株的光形态建成,并且体积较小、波长较精确、散热较少、寿命较长。近年来,运用LED研究光照对组培植物生长影响的报道很多,但很少系统报道组培植株从愈伤阶段、组培苗营养生长阶段到生殖生长阶段对不同光照的响应,特别是离体开花方面。本文首先综述了光谱能量分布对组培植物生长发育影响的研究进展,光调节模式,大豆和铁皮石斛组织培养的研究进展和LED在植物组培中的应用前景等。并在此基础上以大豆和铁皮石斛为试验材料,研究了不同光谱能量分布对组培苗生长和发育的影响,筛选出适合大豆再生体系建立以及铁皮石斛组培苗生长和离体开花的LED光源。主要研究结果如下:1.在下胚轴再生体系中,630 nm红光有利于两个品种大豆愈伤生物量的积累,3000 K荧光灯、黄光以及红蓝绿(R660BG)可作为南农99-6愈伤及丛生芽诱导的光源,3000 K荧光灯、红蓝绿和红蓝黄(R660BG和R660BY)可作为辽鲜1号愈伤及丛生芽诱导的光源。在子叶节再生体系中复合光谱中630 nm红光会抑制丛生芽之间相互伸长,而660 nm红光能显著缓解相互抑制作用,并且有利于丛生芽形态生长、叶绿素合成和干物质积累以及生根苗形态生长、干物质积累和根系发育。添加绿光或黄光均抑制丛生芽相互之间的伸长,且添加黄光抑制更强,添加绿光可促进丛生芽的叶绿素合成、干物质积累及生根壮苗,添加黄光可提高菜用大豆蔗糖和游离氨基酸的含量。总之,R660B适宜用作大豆子叶节丛生芽诱导阶段的光源,有利于提高丛生芽伸长率,后续的丛生芽生长和生根阶段可在R660B适当添加绿光。2.在光密度对大豆组培苗生长影响的试验中表明,在红蓝光60μmol·m-2·s-1光密度处理下,大豆子叶节再生丛生芽多,伸长率高,并且丛生芽的长度、茎粗和生物量积累达到最佳状态;在红蓝绿光60 μmol·m-2·s-1光密度处理下,大豆生根苗茎粗、主根长度、生物量积累、根冠比、根系活力均显著高于其他处理;40 μmol·m-2·s-1光密度处理下丛生芽生物量积累、生根苗茎粗、主根长、根系活力、根冠比以及光合色素、蔗糖、可溶性糖和游离氨基酸含量均显著较低,而70 μmol·m-2·s-1光密度处理下类胡萝卜素和可溶性蛋白含量最高,且气孔出现关闭现象,植物已开始自我保护状态。结果表明:过低或过高的光密度均不利于大豆组培苗的生长,本试验筛选出的适宜光密度为 60 μmol·m-2·s-1。3.在光谱分布对铁皮石斛组培苗生长影响的试验中表明,复合光谱中的630 nm红光能加快铁皮石斛组培苗茎的伸长并促进植株提早进入成花阶段,660 nm红光更有利于植株的健康生长,生物量的积累,蔗糖的转运和花器官的生长发育,添加白光更有利于铁皮石斛组培苗在营养生长期的生物量积累,植株生根壮苗和移栽成活以及茎部食用品质,添加黄光有利于蔗糖在植株成花阶段的转运、花器官的发育和类胡萝卜素在花瓣中的积累。红蓝白(R660BW)有利于铁皮石斛营养生长,尤其是提高茎部品质,而红蓝黄(R660BY)有利于石斛离体开花及花部生长发育。4.光密度对铁皮石解组培苗生长影响的试验表明,50 μmol·m-2·s-1处理下铁皮石斛组培苗蔗糖、淀粉含量、净光合速率、茎粗、根系活力和生物量积累量均达到最优。低光密度下,铁皮石斛组培苗株高和叶面积显著增大,而茎粗、叶厚及生物量积累均较低。高光密度下植株通过增加叶片厚度、减小叶面积、降低叶绿素含量、降低光合速率、增加类胡萝卜素和可溶性蛋白含量等适应性反应来使自身生理生态反应免受高光密度光照的破坏。综上所述,R660B适宜用作大豆子叶节丛生芽诱导阶段的光源,有利于提高丛生芽伸长率,R660BG可用于后续的丛生芽生长和生根阶段的光源;光密度为60μmol·m-2·s-1的复合光谱可用于大豆组织培养;R660BW有利于铁皮石斛营养生长及移栽成活,尤其是提高茎部的品质,而R660BY有利于石斛离体开花及花部生长发育;光密度为50 μmol·-2·s-1的复合光谱可用于铁皮石斛组织培养。因此,LED光谱能量调控技术可以广泛应用在大豆遗传转化再生体系的建立及铁皮石斛的生产及研究中。