论文部分内容阅读
金属快速成型技术是一种增量制造技术,其采用分层加工、迭加成型的方式逐层增加材料进而生成3D实体。金属快速成型技术技术最突出的优点是无需机械加工或模具,就能直接从计算机图形数据中生成任何形状的物体,从而极大地缩短产品的研制周期,提高生产率和降低生产成本,快速成型技术融合了计算机图形学技术、材料及机械工艺等多学科,因此该技术广泛应用于航空航天、医学、军事等领域。本文为了缩短加工复杂零件制造周期,在广泛调研国内外研究现状的基础上,研究开发了一套金属快速成型软件系统,并在软件的基础上进行试验,做出模型样件。因此,本文主要围绕金属快速成型关键算法进行论述,主要包括以下几个内容:提出基于半边数据结构分层算法;将Kd_tree引入到分层算法中,并优化Kd_tree存储空间;加工路径轨迹的规划;快速成型软件在零件加工中的应用等。主要研究内容包括: ⑴基于半边数据结构的分层算法。首先,将杂乱的三角面片的点、边、半边及面的信息建立具有拓扑关系的半边数据结构。搜索所有的三角面片,找到首个与切片平面相交的三角面片,然后按照半边数据结构的拓扑关系逐层得到整个模型在该层上的分层轮廓。建立的半边数据结构能够在o(1)时间搜索到下一个与之相交的三角面片。最后将分层算法分成与三角面片相交和在三角面片上两部分处理,与基于几何特征的切片算法和基于点、边、面等拓扑信息的算法相比提高加工精度,并设计对比试验,验证算法正确及可靠性。 ⑵将Kd_tree引入到分层算法中,运用Kd_tree建立树形结构,分层时按照分层层厚在Kd-tree上找到首个与分层厚度相交的三角面片。优化设计Kd-tree存储空间,建立的Kd_tree使查找首个与切片平面的相切的三角面片的时间复杂度为O(log(n))。提出基于快速排序算法的空间优化,将三角面片索引作为一个全局变量存储,在建立Kd_tree时依据快速排序的思想将全局索引进行重新排序,树节点中只存储符合该分辨器要求的索引点的起始位置和终止位置;提高了时间复杂度和空间复杂度。 ⑶在加工轨迹生成算法中,主要由单层内的轨迹填充算法和层与层之间的轨迹连接算法,在单层的轨迹填充算法中,选取zigzag算法进行待加工区域的填充。多层的轨迹连接算法是单层轨迹生成算法的基础建立层次树形结构,将各个层的起点和终点联系起来,在规划多层轨迹时,本文结合加工扫描工艺,采用交错扫描等方式提高了零件的加工质量及减少了零件加工过程中的热应力,最终得到零件的加工轨迹。基于hoops图形算法库设计仿真动画,对生成的轨迹进行验证,进而验证了算法的正确性。 ⑷相关算法在金属快速成型的应用,在机器人,激光器及控制器等硬件条件下,对上述算法所产生的加工轨迹在实验室条件下验证。首先,将3D模型导入到该软件中,调整好一定的位置关系进行分层算法处理。得到的分层轮廓依据加工者的实际填充需求选用合适的填充算法得到零件的路径轨迹,进而得到整个零件的加工路径。由于机器人有自己的编程语言,所以将生成的路径点转化成机器人所识别的语言。在此前硬件条件的基础上,设计软件中的加工参数进行加工零件,得到3D实体。