【摘 要】
:
面向高超声速飞行器总温模拟装置的气流温度信号模拟系统是高超声速飞行器半实物仿真的关键部分,确保气流温度测量结果的准确性对气流温度信号模拟系统至关重要。气流温度信号模拟系统由高温等离子喷枪,气流混合容腔、热电偶等组成,具有温度高、温度和流速变化快等特点,在使用热电偶测量其气流温度时,存在较大的误差。为提高气流温度测量的准确性,本文在对气流温度信号模拟系统进行分析和研究的基础上,提出了气流温度准确测量
【基金项目】
:
国家自然科学基金(5197051445):面向高超声速飞行器总温模拟装置的气流温度信号模拟系统研究;
论文部分内容阅读
面向高超声速飞行器总温模拟装置的气流温度信号模拟系统是高超声速飞行器半实物仿真的关键部分,确保气流温度测量结果的准确性对气流温度信号模拟系统至关重要。气流温度信号模拟系统由高温等离子喷枪,气流混合容腔、热电偶等组成,具有温度高、温度和流速变化快等特点,在使用热电偶测量其气流温度时,存在较大的误差。为提高气流温度测量的准确性,本文在对气流温度信号模拟系统进行分析和研究的基础上,提出了气流温度准确测量动态补偿方法。主要研究内容如下:首先,建立了高温等离子喷枪、气流混合容腔、热电偶传热过程的数学模型,在此基础上,对影响高温气流温度准确测量的因素进行了分析,结果表明,热电偶的测量误差受到气流温度、气流流速、热辐射和热传导等因素的影响。其中,气流温度和流速的变化影响动态误差的大小;热辐射和热传导的强弱影响动态误差和静态误差的大小。此外,热电偶传热模型时间常数的最大值是最小值的4倍以上,表明热电偶传热模型中的参数具有极大的不确定性,增大了动态补偿的难度。其次,为了提高气流温度测量结果的准确性,在温度较低时,本文采用了两支热电偶同时测量,结合时域补偿方法动态计算热电偶传热模型中的时间常数,然后基于模型对测量温度进行补偿,将气流温度的动态测量误差降低到原来的1/22~1/8;在温度较高时,由于热辐射和热传导作用增强,双热电偶补偿方法将完全失效,本文采用三支热电偶同时测量,提出了三热电偶温度测量动态补偿方法,对气流温度进行动态补偿,将高温条件下,受到热对流、热辐射和热传导的影响产生的综合误差降低到原来的1/5~1/2。最后,搭建气流温度信号模拟系统实验平台,在利用实验结果对相关数学模型进行验证的基础上,分别采用双热电偶和三热电偶温度测量动态补偿方法对测量结果进行补偿。补偿结果表明,双热电偶补偿方法可以将热对流误差降低到原来的1/5~1/3。三热电偶补偿方法可以将热对流、热辐射和热传导的综合误差降低到原来的1/4~1/2。
其他文献
激光切割加工技术作为先进制造技术,已广泛运用于材料切割加工行业。调高控制系统是激光切割设备的重要子系统,其功能是保证切割头与待加工工件之间的距离恒定。为了提升当前调高控制系统的位移测量精度与采样频率以及位置随动响应性能,本文设计了基于FPGA的激光切割头调高控制系统,利用FPGA的高并行与低时延等特性,实现了高速高精的位移测量与快速稳定的随动控制。本文首先基于系统的技术参数指标,阐明调高控制系统的
新冠背景下,越来越多的非接触式测温设备被投入使用。本文主要针对非接触式测温设备在对行人进行测温时存在的人力成本高、漏检误检、计算存储负担较高等问题,提出了一种基于人脸检测、行人跟踪与图像质量评价的视频人脸图像去重方法。该方法首先利用人脸检测算法准确识别视频帧中的人脸,然后利用行人跟踪算法得到人脸的移动轨迹,最后对轨迹中的多张人脸图像进行质量评价,并取质量最高的图像作为输出,从而达到去重效果。针对人
近年来工业机器人作为智能制造、自动化生产等领域的“主力军”受到业界越来越多的关注,其生产效率对降低生产成本、提升产品竞争力起着至关重要的作用。如何控制工业机器人使其末端执行器以最短的时间沿着预定的笛卡尔空间路径以安全、稳定的状态完成运动任务是一个重要且棘手的问题,而时间最优轨迹规划就是解决这类问题的关键技术。因此本文以工业机器人中较为典型的多轴串联型机械臂为研究对象,考虑常用的物理约束,对时间最优
表面缺陷检测作为智能制造的重要环节对于保证产品质量优化生产工艺有重要意义。随着深度学习技术的快速发展,使用深度学习进行零件表面缺陷检测成为新的研究趋势。深度学习技术基于数据驱动,因此图像数据集质量对于深度学习缺陷检测性能有重要影响。本文面向深度学习缺陷检测,针对其中三种常见的图像数据集问题包括图像数据集正常、弱特征、批次差异问题展开图像增强技术相关研究。并基于充分利用已标记数据知识的原则,分别提出
空化是液压领域的复杂问题和技术难题,水下航行器的疏水管路中普遍存在着易于发生空化的结构,管路系统的进出水口压力因泵工作状态及潜深的改变而发生动态变化,这种变压力对空化演变过程及其诱导的流体噪声特性产生重要影响。目前对空化的研究多以定常压力为边界条件,忽视了非定常压力对空化及其诱导的流体噪声的影响。本文基于疏水系统易空化结构的物理模型,结合实际工况建立变压力数学模型,主要研究进出水口压力动态变化下的
智能制造背景下,对数控机床产业内的企业机构进行决策支持对其把握机遇实现跨产业融合创新、提升技术竞争力至关重要。目前数控机床产业的决策支持研究主要着眼于战略层面或面向具体加工过程,缺乏对企业机构的个性化决策支持。同时,知识图谱作为一种前沿的知识表示与存储形式,目前已被广泛应用于各领域决策支持研究中,但数控机床领域目前尚无面向融合创新决策支持的开源知识图谱。针对上述问题,为了实现对数控机床企业机构的个
药物吸入疗法(吸入给药)具有起效快、剂量小、副作用低等优点,被公认为治疗呼吸系统疾病的首选给药方法。本文针对药物吸入疗法普遍存在药物递送效率低的突出问题,采用真实人体支气管树模型,基于欧拉-拉格朗日方法,建立了适用于呼吸道的高精度流场计算方法,以及适用于可吸入药物颗粒的两相流运动模型,定量化揭示了可吸入药物颗粒在呼吸道内的区域沉积特性。研究将为人体呼吸道高效药物递送方法以及吸入器的研制提供理论依据
交流伺服系统具有鲁棒性好、精度高的特点,广泛应用于数控机床、工业机器人等自动化设备中。但在跨度大、负载多变的柔性结构设备中,系统常受到负载惯量时变和负载变化等多种因素导致的扰动,降低系统鲁棒性和控制精度。针对以上问题,本文提出了一种基于二阶终端滑模的自抗扰控制方法。从伺服系统的传动特征出发,建立了二质量模型。在此基础上分析了扰动成因,从辨识负载惯量、设计鲁棒的速度控制器、建立负载扰动观测器三个方面
高速高精是数控加工中重要的发展方向。在高速精加工的过程中,刀具相对于工件的频繁加减速会导致进给速度在刀具轨迹横向上不一致,进而导致加工零件的表面缺陷。产生上述问题的主要原因是数控系统在进给速度规划时刀具轨迹特征点识别不准确,进而导致限速区间划分出现偏差。因此准确且全面的识别出刀具轨迹中的特征点是必要的。针对现有刀具轨迹特征点识别算法中阈值敏感,难以利用历史样本,依赖于专家经验等问题,本文提出了基于
光器件作为光模块中承担光电信号转换的关键部件,在光纤通讯中发挥着至关重要的作用,而光器件中用于建立电连接的金丝焊线的重要性更是不言而喻。由于焊线直径微细,质地柔软,在生产过程中极易产生缺陷,因此产品出厂前必须对焊线质量进行检测。为了帮助企业实现质量检测的自动化,设计了基于立体视觉的光器件缺陷检测系统。该系统由左中右三台相机组成,并配置了同轴光及低角度环形光两套照明。本文着重研究了光器件焊线提取方法