核苷酸酶PTPN调控拟南芥及玉米抗旱分子机理研究

来源 :华中农业大学 | 被引量 : 0次 | 上传用户:wangjuekenan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
干旱作为主要的非生物胁迫之一,严重影响植物的正常生长发育。随着全球气候变暖,干旱已经成为制约全球农业发展的巨大瓶颈,严重威胁世界粮食安全。由于植物具有不可移动性,所以在长期进化过程中,植物自身进化出一套独特的保护机制来抵御非生物胁迫,深入解析植物干旱响应调控机理对于改良植物耐旱性,尤其是培育耐旱作物具有重要意义。脱落酸(ABA)是一种天然生成的植物激素和生长调节剂,研究表明ABA在调控干旱胁迫应答反应中发挥重要作用。抗坏血酸(AsA)是植物中主要的抗氧剂,有利于植物清除非生物胁迫所造成的氧化伤害,广泛报道参与植物抵御非生物逆境。尽管很多研究报道ABA和AsA参与调控植物非生物逆境响应,但二者间是否存在联系,如何协同调控干旱胁迫应答至今仍然未知。
  本研究通过对本实验保存的140份未知功能的拟南芥磷酸酶类基因的T-DNA插入突变体材料进行干旱表型筛选,鉴定了一个干旱敏感型突变体,并克隆了T-DNA插入所破坏的基因AtPTPN(PTP-like Nucleotidase ),进一步以AtPTPN作为候选基因开展了系统性的基因功能验证和分子机理解析相关研究工作。系统发生学分析结果表明该基因序列在各物种中相似性很高,极高的保守性预示着该基因可能具有重要的生物学功能;表达谱分析结果表明,AtPTPN基因在多组织器官中均有表达,并且其转录水平能够受到ABA以及干旱的诱导;表型分析结果表明,相较于野生型材料,Atptpn突变体对外源ABA处理不敏感,对干旱胁迫更加敏感。在Atptpn突变体中外源表达AtPTPN基因能够恢复Atptpn突变体的ABA不敏感表型以及干旱敏感表型。超量表达AtPTPN显著增强拟南芥对ABA的敏感性以及对干旱胁迫的耐受性,证实AtPTPN在调控植物干旱胁迫应答反应中发挥重要作用。通过序列比对,我们进一步发现并克隆了玉米基因组中与AtPTPN序列相似性最高的基因ZmPTPN(氨基酸序列相同性达72%)。组成型过量表达ZmPTPN显著提高玉米苗期抗旱性。RNA干涉下调ZmPTPN表达则显著降低玉米苗期抗旱性,证明玉米ZmPTPN与拟南芥AtPTPN功能相近,均为干旱胁迫应答反应中的正调控子。以上结果表明,PTPN抗旱功能在高等植物中十分保守。
  为了进一步解析PTPN调控植物耐旱分子机理,本研究进一步筛查了PTPN的作用底物,通过底物筛查我们发现PTPN蛋白具有典型的核苷酸酶活性,能够水解GDP/GMP/dGMP/IMP/dIMP等核苷酸,释放Pi。VTC2是植物AsA生物合成途径中的限速酶,本研究发现,PTPN能够通过调控拟南芥中局部Pi的含量影响由VTC2控制的限速步骤,调控植物体内的AsA合成。超量表达AsA合成途径的限速酶编码基因VTC2能够显著提高植株的AsA含量,提高拟南芥的抗旱性,并且部分依赖于AtPTPN的功能。以上结果说明VTC2与AtPTPN在AsA生物合成和干旱胁迫应答反应中存在遗传互作。通过酵母单杂交实验,我们筛选到热激蛋白转录因子HSFA6a能够特异性结合AtPTPN启动子上的HSE(heat shock factor binding element)位点,并激活其表达。遗传分析结果显示,HSFA6a调控ABA和干旱应答反应的功能部分依赖于AtPTPN。
  综上所述,我们发现了一个全新的抗旱基因PTPN。一方面,该基因由HSFA6a介导参与ABA应答反应,另一方面该基因作为核苷酸酶调控AsA的合成。该基因作为一个中枢分子,将ABA信号通路与AsA合成通路结合起来,共同参与植物干旱胁迫应答反应。PTPN基因的发现及其抗旱机理解析,为作物抗旱品种选育提供新的遗传资源和理论依据。
其他文献
淫羊藿为补益类常用中药材,临床上广泛用于治疗骨质疏松、慢性肾炎和免疫调节等。柔毛淫羊藿(Epimedium pubescens Maxim.)和心叶淫羊藿(E.brevicornu Maxim.)均为《中国药典》规定的淫羊藿药材的基原植物,其主要活性成分为淫羊藿菅等黄酮醇苷类化合物。药用植物活性成分决定于物种遗传基因,同时与生长环境密切相关。淫羊藿为阴生植物,研究表明,心叶淫羊藿淫羊藿苷含量大大高
在过去的几十年里,增加玉米种植密度是提高玉米单产的有效手段。然而,高密度种植会导致玉米群体中红光/远红光比率(R/FR)下降,从而引发一系列避荫综合征(Shade Avoidance Syndrome,SAS),最终导致产量降低。在拟南芥中,调控SAS的分子机制已经被阐明,但在玉米中仍不清楚。在本研究中,我们对玉米光敏色素作用因子(PIF)基因家族在调控光信号和光形态建成方面进行了初步的功能鉴定。
学位
植物重要的发育过程往往伴随着细胞命运的快速转换过程,大量基因的表达水平、修饰水平会相应发生变化。通过对转换期进行大规模组学分析,有助于深入挖掘关键调控基因,明确其表达和修饰水平的变化,为进一步解析重要发育进程的分子机制奠定基础。在遗传转化过程中,诱导愈伤是关键环节,该过程利用了植物细胞的全能性,是一个典型的植物细胞命运转换的过程。本研究利用一个具有较高转化效率的自交系CAL,首先对愈伤诱导全过程进
学位
水稻雄性生殖发育是一个高度复杂、受到精确调控的生物学过程,直接涉及到水稻后代繁衍和产量有无,其中有大量的基因参与,这些关键基因的突变或表达异常都将会导致小孢子发育异常,致使其花粉败育和小穗不育。目前已报道了一系列水稻雄性不育相关基因,但对于进一步探究水稻雄性生殖发育的分子机制及其完整的调控网络尚远远不足。本研究针对甲基磺酸乙酯(Ethyl Methylsulfone,EMS)诱变籼稻恢复系中恢80
学位
随着育种手段的进步,黑龙江省高粱品种已由中高秆稀植过渡到矮秆密植机械化生产。氮素是高粱生长发育必需的营养元素,以往研究主要以中高秆稀植为研究背景,关于氮素对耐密植矮杆高粱生长特性、碳氮代谢机理、耐低氮响应等系统研究较少,特别在高寒地区的研究报道尚属空白。本文以黑龙江省北部不同基因型耐密植矮杆高粱为试验材料,系统研究了耐密植高粱的碳氮代谢机理,明确了氮素对不同基因型高粱生理响应的基本规律及差异机制,
学位
水稻(Oryza Sativa)是世界第二、亚洲第一主粮作物。水稻驯化过程中产生了籼粳亚种的遗传分化,两亚种形态、生理和生态特性有着明显的差异,在中国的地理分布基本表现为北方粳稻为主,南方籼稻为主,长江流域为籼稻、粳稻交错种植。利用籼梗亚种杂交或远缘杂交创造新品种,聚合有利基因,选育高产优质品种是我国北方粳稻特别是绿色超级稻的重要育种方法。籼稻和粳稻淀粉性状存在显著差异,且受气象环境因素影响。研究
学位
大豆的抗倒伏和种子相关性状是大豆重要的农艺性状,其中抗倒伏性状与茎杆机械结构以及组成成分息息相关。现代栽培大豆(Glycine maxL. Merr.)是由一年生野生大豆(Glycine sojaSieb)驯化而来。与栽培大豆茎杆粗壮、直立的生长特征不同,野生大豆生长习性中一个重要的特征是茎杆细弱、呈现匍匐生长状态;另外,其粒重和种子油份含量等也呈现较大差异。为了解析这些差异背后的控制基因,更好地
学位
本论文中,将纳米颗粒物与农药同时添加到土壤中,分别探索了纳米颗粒物对农药在土壤-植物体系中迁移转化以及生物有效性的影响及机制。在纳米颗粒物对农药在土壤-植物体系中迁移转化影响及机制的试验中,首先将一系列不同浓度(10、100和1000 mg/kg)的环境友好型纳米颗粒物(纳米生物碳)与常用的一种农药(五氯硝基苯,1000 ng/g)同时添加到土壤中种植小白菜,在不同时间点采样,测定小白菜根部与叶部
学位
硼是植物生长发育所必需的微量矿质营养元素。土壤缺硼在全球范围内的农业生产中都是重要的问题,目前已有超过80个国家中的132种作物出现缺硼症状。甘蓝型油菜是世界上第三大食用植物油和第二大植物饲料蛋白质的来源,我国油菜产量十分依赖于硼肥的施用,素有“无硼不种油菜”的说法。但是硼矿石属于不可再生资源,而通过遗传改良的方式提高甘蓝型油菜的低硼耐受能力,在减少或者不施用硼肥的条件下,保持或者提高甘蓝型籽粒产
燃料电池和金属─空气电池作为一种能量转化装置,具有能量密度高、工作温度低和环境友好等优点,有望在便携式电源、居民住宅尤其是交通运输动力电源等领域得到广泛应用。然而在阴极发生的氧气还原反应是一个动力学缓慢过程,从而限制了燃料电池和金属-空气电池的转化效率。目前,贵金属铂(Pt)及其合金具有最佳的氧气还原催化活性,被广泛地应用于氧气还原反应(ORR)中,但是Pt基催化剂面临资源匮乏、价格昂贵、长期稳定
学位