论文部分内容阅读
先天性血管狭窄性疾病是一种常见的血管疾病,占全部先天性心脏病的5%-8%,且男性多于女性,发生率为活产婴儿的0.02%-0.06%,已经成为严重危害婴幼儿生命的最重要疾病之一。重建狭窄血管正常的血流通道,恢复血压和循环功能,并减少并发症的发生率是动脉狭窄性治疗的主要目的。自1996年开始,尽管尚未有血管支架获得FDA认证用于治疗先天性血管狭窄性疾病,但也已经获得儿科和先天性心脏病研究中心及医学界的强烈推荐。目前,可降解血管支架由于其安全的降解性能使其成为治疗小儿先天性血管狭窄性疾病潜在的治疗手段和方法。它可以在植入靶向血管特定时间内保持机械稳定性,支撑狭窄血管恢复正常生理功能,并在血管修复愈合期后降解成小分子,随细胞代谢排出体外,具有解决永久性金属支架植入后远期再狭窄问题的潜力。但是目前可降解血管支架的研制多集中在冠状动脉狭窄性疾病治疗上,支架直径小于4mm,而针对直径为6-9mm婴幼儿大动脉的可降解血管支架研制报道甚少;且聚合物可降解血管支架存在着径向支撑性能不足,降解时间与血管修复愈合时间不匹配等问题,限制了其临床应用和发展。因此,需要设计一种面向先天性血管狭窄性疾病患者的聚合物可降解血管支架,具有力学增强性能和适宜的降解性能,以改善现有可降解血管支架的问题,填补该领域的空白,并提高其进入临床应用的可能性。针对以上问题,本课题采用具有良好力学性能和降解性能的可降解单丝材料聚对二氧环己酮(PPDO)为基材,通过编织工艺和热定型工艺设计制备了三种结构PPDO编织型血管支架,采用平板压缩试验和仿真数值模拟对其构效关系进行精细化探究。然后结合聚己内酯(PCL)复丝,构建具有支撑性能和降解性能双重可控调节的PPDO/PCL编织自增强型可降解血管支架,并通过体外和体内试验探究新型支架的物理机械性能、降解性能和生物安全性。具体地:第二章首先针对临床上对血管支架性能的基本要求,优选纺织中的编织结构,再对现有二维管状编织技术进行分析和讨论,明晰不同编织结构制备过程中纱线的屈曲规律,随后选用美国食品药品监督管理局(FDA)批准的可降解聚合物材料聚对二氧环己酮(PPDO)单丝为材料,基于现有编织方法,设计并制备了3种不同结构内径为8mm的PPDO编织型血管支架(规则编织支架(RBS),以规则编织结构为基础结构的4轴纱三向编织支架(TBS-A),以规则编织结构为基础结构的8轴纱三向编织支架(TBS-B))。第三章分别研究编织结构参数和热定型温度参数对支架的物理机械性能和体外降解性能的影响规律。支架的支撑性能是其临床应用的核心问题,本章首先采用平板压缩法表征RBS支架、TBS-A支架和TBS-B支架压缩性能的差异性。结果表明,引入轴向纱线后支架的压缩强力分别提升了278.24%和225.06%,弹性回复率和能量损失率也均得到优化。为了进一步探究支架在受到压缩载荷作用时纱线的应力-应变分布状态以及纱线自身的变形过程,以精准定量分析支架力学响应性参数及分布状态,从而实现对支架力学行为的精细化研究,本课题通过仿真数值模拟平板压缩过程,获得以上三种结构PPDO编织型血管支架在压缩至初始直径50%时的应力-应变分布云图及特征纱线的变形状态。结果表明,PPDO编织型血管支架的抗压能力是由纱线自身弯曲程度和组成支架的交织位点数量共同决定的,两者存在交互作用,通过结构优化可以获得最佳的抵抗外力变形的能力。随后基于PPDO材料的热力学性能,选择60℃、80℃和100℃三种温度对PPDO编织型血管支架进行热定型处理,探究热定型工艺与支架支撑性能的关系。结果表明,100℃热定型处理后支架材料的取向和重排效果更好,编织过程中产生的内应力消除的更彻底,使编织支架具有更高的结构稳定性。本章最后进行了RBS支架和TBS-A支架的体外静态降解试验,验证了PPDO材料本体降解机理,同时表明PPDO编织型血管支架TBS-A具有更好的机械稳定性,可以保持4个月的机械完整性,且降解5个月时压缩强力几乎完全丧失。这与狭窄血管修复愈合周期较为吻合,能够基本满足临床上对血管支架降解性能的要求。第四章基于如上PPDO编织型支架结构和性能上的优缺点,优化设计和制备了一种双重可控式PPDO/PCL编织自增强型可降解血管支架(发明专利公开号:CN108066048A)。通过第三章PPDO编织型支架的研究,明晰了限制交织点的滑移和转动是提高支架力学性能的有效途径。为此,本章我们首先设计并制备了一种以PPDO单丝为芯,PCL复丝外包的皮芯结构编织纱,随后引入到规则编织结构中,通过90℃和1小时热处理后使PCL层软化流动,经冷却后在交织点形成粘接固定。进一步分别选择4根皮芯结构编织纱和8根皮芯结构编织纱以特定排列方式与PPDO单丝共同编织,制备出两种PPDO/PCL编织自增强型血管支架(分别记为cBRS-A和cBRS-B)。经显微镜观察,部分交织点被限制固定,且支架最大壁厚显著小于含4和8根轴纱的TBS支架。第五章和第六章分别研究双重可控式PPDO/PCL编织自增强型可降解血管支架不同结构对其支撑性能和降解性能的影响。第五章首先对PPDO/PCL编织自增强型血管支架的平板压缩性能进行试验和有限元模拟研究。结果表明,与PPDO对照组支架相比,cBRS-A支架和cBRS-B支架的压缩强力分别提高了124.06%和169.58%,弹性回复率从对照组的89.89±1.77%分别增加至93.09±1.78%和94.05±1.60%。有限元分析结果表明,皮芯结构热粘合纱线在PPDO/PCL编织自增强型支架中形成了力学增强型骨架结构,在外力作用下不仅限制了热粘合纱线之间的转动和滑移,也限制了PPDO单丝的运动。随着热粘合纱线数量的增加,PPDO/PCL编织自增强型支架抵抗外力变形的能力越强。随后,通过试验和有限元模拟相结合,研究了PPDO/PCL编织自增强型血管支架在压握-扩张过程中机械性能的变化情况。结果表明在压握和球囊辅助扩张的过程中热粘合纱线均表现为显著的粘弹性,而PPDO单丝仅在球囊扩张过程中表现出粘弹性。这一现象导致了压握-扩张过程后支架尺寸和机械性能的改变。随着热粘合纱线数量的增加,球囊辅助扩张可以部分恢复由于压握过程导致的压缩强力的损失。第六章体外静态降解结果表明,双重可控式PPDO/PCL编织自增强型可降解血管支架具有两级降解特性,在降解初期PPDO单丝发生降解,但是由于皮芯结构热粘合纱线相互粘接固定,仍然保持支架的结构稳定和机械支撑,并在降解后期发生热粘合纱线的降解。这种降解形式可以减少单位时间内酸性降解产物的浓度,从而具有临床上减轻炎症反应的潜力。此外,支架在脉动压和管壁压力共同作用下表现出与静态降解显著不同的降解特性,脉动压作用将会改变PPDO/PCL编织自增强型血管支架的降解机理,但是会延缓由于管壁压力导致的支架加速降解。第七章通过体内动物试验研究双重可控式PPDO/PCL编织自增强型可降解血管支架cBRS-A的力学支撑性能,降解性能和生物安全性能。结果表明,支架植入至猪髂总动脉4个月内支架管腔保持通畅和尺寸稳定,未发生移位以及血管严重损伤。因此,PPDO/PCL编织自增强型血管支架cBRS-A具有较为优异的机械支撑性能。支架植入后2个月内没有发生明显的降解痕迹,而在植入后4个月时,PPDO单丝组分明显降解,PPDO/PCL热粘合纱线组分仍保持结构稳定。这与体外静态降解表现出的两级降解性能相一致,且基本匹配损伤血管3-6个月的修复愈合时间。因此,PPDO/PCL编织自增强型血管支架cBRS-A具有较为理想的降解性能。此外支架植入后1个月即发生内皮细胞的大量黏附和生长,形成致密的内皮层,在第4个月时内皮细胞表现为成熟的梭形,随血流方向规则取向,说明PPDO/PCL编织自增强型血管支架cBRS-A材料具有良好的生物相容性。但是4个月的试验结果也表明,支架降解产物的炎症反应依然比较严重,提示梯度化控制降解产物的重要性。综上所述,本课题基于PPDO单丝材料,对二维管状编织技术及其结构和力学性能、降解性能的构效关系进行分析和探讨,由此设计并制备出一种新型可降解血管支架(双重可控式编织自增强型血管支架),通过体外、体内试验分析和讨论了其力学支撑性能、降解性能和生物安全性等方面的有效性。这种新型血管支架不仅改善了现有可面向先天性血管狭窄性疾病的可降解血管支架的不足,也充实了可降解血管支架各项性能的评价体系,为血管支架的进一步设计及性能优化打下基础。同时,本课题的结果也表明,仍需要对支架结构和材料进行优化设计,形成更为精确的梯度降解性能,从而降低炎症反应的发生率。