论文部分内容阅读
辐射传热是能源动力、航空航天等领域的基础问题。热辐射数值计算方法做为辐射传热问题的主要研究方式逐渐显现出重要地位和作用。蒙特卡洛方法(Monte Carlo Method,MCM)可以精确地处理光谱特性、非均匀介质、各向异性散射及复杂几何形状等复杂辐射计算问题,已经成为解决辐射传热问题的主要数值方法之一。蒙特卡洛方法是统计模拟方法,其计算结果不可避免会引入统计误差。随着蒙特卡洛法在热辐射数值模拟计算应用范围的不断扩展,如何定量分析和评估其计算结果的误差及精度已成为关注的焦点,建立公认的数值误差分析和精度评估方法成为蒙特卡洛法主要研究内容之一。揭示蒙特卡洛统计误差出现的机理,准确把握多种因素对计算精度和计算效率的影响,可为蒙特卡洛数值模拟方法可靠性评价及其应用扩展提供参考。辐射温度平衡条件下蒙特卡洛法计算辐射传热问题的精度评估分析。将密闭辐射传热系统设置为等温和辐射平衡态,以此为基础提出一种直接地精确评价辐射传热蒙特卡洛法计算精度的方法。针对固定不变且均匀分布的表面和空间介质辐射特性,研究了单元发射能束数(the number of energy bundles,NEB),离散网格密度(the mesh density level,MDL)和介质单向单网格平均光学厚度(the mean optical thickness per element,MOTE)等因素对辐射传递蒙特卡洛法计算精度的影响。MOTE是评估表面热通量计算误差的关键尺度参数:对于不同的网格密度MDL和系统的光学厚度,如果MOTE变化不大,那么使用相同NEB蒙特卡洛计算误差水平也不会发生显著变化。分别建立蒙特卡洛计算表面热通量和空间热通量散度的最小误差与NEB之间的比例关系。若在可接受的成本下设定要达到的辐射传热计算误差水平为1.0%,则表面单元最小NEB为3000,空间单元最小NEB为750。对辐射传热系统表面发射率和参与介质的散射反照率等物理条件的变化引入的误差进行评估,对多种辐射特性条件下蒙特卡洛法计算热辐射的精度进行定量评价。介质散射反照率的变化对热辐射计算精度的影响不大。当MOTE小于0.1时,表面发射率从0.1增大至0.9,表面和空间热通量最小计算误差水平会增大3到4倍左右,但与MOTE的关联不大;运用双线性拟合法分别建立表面和空间单元最小误差值与两个独立的影响因素(能束数和表面发射率)的双线性函数关系,便于根据计算误差水平的要求选择合适的空间离散网格密度和蒙特卡罗计算能束数。两种特殊的温度非平衡态辐射传热的蒙特卡洛计算精度评估。立方体密闭腔内部温度在空间分布不均匀造成辐射非平衡状态,表面单元辐射热通量和/或空间体积单元辐射热通量散度在介质光学厚度极限薄或极限厚条件下出现极限收敛值,将之作为极限条件下辐射热通量的精确值。通过分析极限收敛值和蒙特卡洛法计算结果的偏差得到非平衡状态下蒙特卡洛法的计算精度。当介质光学厚度低于0.001左右时,表面和空间单元计算误差保持在最小误差水平;而能束数的变化直接影响到最小计算误差水平的高低。当能束数每增加两个数量级时,计算误差会降低一个数量级。当能束数达到10000能束时,表面辐射热通量最小计算误差达到1.0%,计算精度达到期望精度值。对于空间辐射热通量散度计算要达到可接受精度所需的最小能束数在3000能束左右。对蒙特卡洛法的计算效率进行定量分析。蒙特卡洛法计算时间和计算精度有紧密联系。能束数NEB每增加一个数量级,计算时间将增加约一个数量级。网格密度每增加一倍,计算时间也会增加约10倍。当网格密度和单元发射能束数固定不变时,蒙特卡洛法计算时间受到表面发射率、介质散射反照率及光学厚度的影响;MOTE小于0.1时,蒙特卡洛法计算时间仅仅与表面发射率的大小有关,随着表面发射率的增大而减少;MOTE大于0.1,蒙特卡洛法计算时间受到介质散射反照率以及光学厚度的影响,计算时间随着介质散射反照率的增大而增加,而光学厚度增大会导致计算时间下降,此时表面发射率对计算时间的影响不大。蒙特卡洛模拟计算过程要在最优性能基础上达到可接受精度,并不是无限制增加能束数减小计算误差,而是在最小能束数附近可获得,使计算成本和计算精度达到最佳平衡。