论文部分内容阅读
功能基因组学的主要研究内容就是研究基因的表达调控机制,研究基因在生物体代谢途径中的地位,分析基因、基因产物之间的相互作用关系、绘制基因调控网络图。近几年发展起来的DNA微阵列技术可以得到大量的时序基因表达数据,这就为这些研究奠定了基础。另外,为了从分子水平上理解生物体功能,需要知道生物体中有哪些基因被表达、在哪里被表达、什么时候表达,以及表达的程度如何等。基因表达的调控是通过基因调控系统实现的,而该系统的结构又由DNA、RNA、蛋白质及小分子之间的关系网络决定。这个网络含有多类成分,调控关系较为复杂,因此引入有效的模型和高效的计算方法来进行研究就显得必不可少。本文回顾了基因表达调控的原理以及现有的一些基因调控网络模型,比如布尔网络模型、线性微分方程模型、贝叶斯网络模型及递归神经网络模型等。本文同时回顾了软计算理论的基本概念,并重点介绍了两类进化计算的方法,即遗传算法和粒群优化算法。在两个基因调控网络(一个是人造基因调控网络,另一个是DNA修复网络)的时序基因表达数据的基础上,本文结合软计算方法对两个模型展开了一系列的研究。一个是稳态系统模型(S-system),本文使用粒群优化算法结合稳态系统模型来确定基因间调控关系,实验证明该方法具有快速收敛性,准确度也较高;另一个是基于惯性法则的微分动力学模型。由于基因调控网络本身具有高度非线性的特征,本文对该模型加以改进,将非线性函数引入到该模型,并且证明该模型具有递归神经网络的特征。实验表明改进的方法有效的减少了模型本身的震荡特性,仿真效果较为理想。由于目前生物信息学,尤其是基因调控网络分析和重建这个研究领域的很多方面尚不成熟,所以从当前获得的实验数据不可能对我们所推测出的网络的生物学准确性进行评价。最好的评价方法就是产生一系列可得的网络,然后交给生物学家用实验证明。科学技术的发展是十分快速的,相信在不久的将来,我们能建立很好的评价网络的方法。