【摘 要】
:
钛合金具有良好的热稳定性和优异的抗大气腐蚀性能,加之低密度属性,使其被广泛应用于航空航天器动力装置中关键部件叶片的制造。经精铸、精锻或机加工后的叶片均需再经过一次磨抛工艺来保证表面质量和轮廓精度。机器人砂带磨抛加工技术因具有柔性好、操作空间大、可拓展性强等诸多优点而成为当前航空发动机钛合金叶片磨削加工领域热门的研究方向之一,但由于钛合金的难加工特性使得砂带磨损极为严重,进而导致钛合金叶片表面质量和
【基金项目】
:
国家自然科学基金面上项目“叶片型面机器人磨抛加工机理及工艺技术研究”(项目号:51375196); 中国博士后面上项目“基于深度学习的叶片前后缘机器人磨削烧伤预测及抑制”(项目号:2019M662592);
论文部分内容阅读
钛合金具有良好的热稳定性和优异的抗大气腐蚀性能,加之低密度属性,使其被广泛应用于航空航天器动力装置中关键部件叶片的制造。经精铸、精锻或机加工后的叶片均需再经过一次磨抛工艺来保证表面质量和轮廓精度。机器人砂带磨抛加工技术因具有柔性好、操作空间大、可拓展性强等诸多优点而成为当前航空发动机钛合金叶片磨削加工领域热门的研究方向之一,但由于钛合金的难加工特性使得砂带磨损极为严重,进而导致钛合金叶片表面质量和加工效率的下降。因此本文针对钛合金试块机器人砂带磨削加工建立了基于声发射的砂带磨损状态监测系统,对机器人砂带磨削加工过程中的砂带磨损机理开展相应研究,具体包括:1)在机器人砂带磨削声发射信号分析中,根据信号的波形特征选择基于数据驱动的EMD算法作为声发射信号分析方法的核心,并针对EMD算法及其现有衍生算法的不足,提出了改进后的CCEEMD算法。同时,开展蒙特卡洛试验证明了实际钛合金试块机器人砂带磨削加工系统中背景噪声各阶固有模态函数的平均能量和平均周期的对数和为零,并以此为基础提出一种声发射信号软硬结合去噪算法。2)在钛合金试块机器人砂带磨削加工过程中,针对砂带的主要磨损形式(磨粒磨钝),建立一种砂带磨粒磨损高度与砂带切向力的关系模型,对砂带磨损过程中磨粒的受力状态进行描述。针对砂带磨削声发射的主要来源,基于能量原理和上述砂带磨损切向力模型建立一种声发射信号功率与砂带磨损高度的理论模型,可以通过模型来预测砂带磨损高度。3)通过对影响钛合金试块机器人砂带磨削磨损量的主要加工参数进行砂带磨削磨损试验分析,得到不同参数组合下的砂带全服役周期的磨损规律以及砂带磨损对加工质量的影响规律,根据试验数据分析砂带磨削声发射信号时频特征,得出声发射信号的前三阶固有模态函数对应于磨粒切削三阶段(滑擦、耕犁、成屑)的结论,并基于此对砂带磨损量模型进行了验证。
其他文献
航天回转类机匣的结构特征在机加工后,会在结构型面交界处形成锐边毛刺,在航天领域,目前仍然以人工去毛刺为主,加工一致性差,效率难以保证,将工业机器人应用于航天领域代替人工去毛刺,长期来看不仅能够降低成本,还能提高效率和去毛刺质量。然而,目前机器人加工主要是以人工示教的形式,且回转类机匣上去毛刺特征数量较多,使用离线编程加工的工作量大且繁琐。因此,分析航天回转类机匣的结构特征和去毛刺工艺,优化去毛刺加
【目的】研制适用于我国医生工作乐趣的测评量表,为了测评医生的工作乐趣,了解医生工作现状,为医生工作乐趣提供信效度良好的测评工具,并通过测评结果提出改进提升策略建议。【方法】本研究分为四个阶段,第一阶段是理论基础确定以及量表指标库条目池构建。通过工作乐趣相关研究理论对比筛选确定以自我决定理论为基础,运用文献研究和专题小组讨论等方法,形成医生工作乐趣量表的维度、指标库构建条目池。第二阶段,通过两轮专家
薄壁零件具有轻质量、强灵活性、可以制造出结构复杂的零件等诸多特点,被广泛应用于航空航天、能源、海洋工程等领域内的装备制造业中。但是薄壁零件自身刚性较低,在加工过程中极易产生振动甚至颤振,从而严重降低薄壁零件表面质量及精度。然而目前对于薄壁零件铣削过程中的加工振动的研究工作主要集中在铣削过程稳定性分析以及颤振抑制两个方面,而对薄壁零件各阶模态振型在加工过程中的振动的贡献量少有关注。通过对薄壁零件加工
海洋蕴藏着丰富的资源,开发海洋资源需要现代化的水下装备作为载体。海水液压技术直接以天然海水作为工作介质,具有对环境的友好和简单的系统组成,已成功运用于水下装备中。然而海水的粘度低、含有悬沙且腐蚀性强,难以在水液压系统的摩擦副间形成润滑膜。摩擦副易遭受不同程度的摩擦和腐蚀失效,进而影响水下装备的工作性能及服役寿命。其次摩擦副在高静水压力下的摩擦腐蚀特性可能与常压下有所不同。高压下的摩擦腐蚀试验开展困
换热器作为必不可少的单元设备,广泛地应用于石油、化工、机械、动力、核能、冶金、船舶、交通、制冷、食品及制药等工业部门及国防工程中。随着换热器朝向紧凑化、高效能的趋势发展,对其换热能力也提出更高的要求,针对其内部散热通道的无源强化传热技术的研究已经成为迫切需求。本文以小型换热器内典型的矩形散热通道为研究对象,基于自然形成的真实粗糙表面和人工安置粗糙元素作为扰流元件这两种无源强化传热技术,通过CFD模
随着工业机器人技术水平的提高,其应用范围不断扩大,被越来越多地应用在诸如航空航天、电气电子等精密制造领域。工业机器人由于绝对定位精度较低,并且随着出厂使用绝对定位精度逐渐下降,以至于无法满足精密制造应用下的需求。针对上述问题,本文根据机器人绝对定位误差的来源,提出了一种定位误差分级补偿的方法,以提高机器人绝对定位精度。为了实现机器人定位误差分级补偿,首先需要确保运动学建模部分的正确性。以HSR-J
中国作为制鞋产业重要的生产和出口基地,现在的作业模式普遍以手工为主。鞋底打磨作为其中的工序之一,人工打磨质量不稳定,而且打磨过程中产生的粉尘对工人的健康造成了极大的威胁,亟需改变现状。针对鞋底自动打磨的工业需求,本文对基于双目线结构光三维测量系统的鞋底内立面打磨关键技术展开了研究,主要研究内容如下:研究并设计了一种双目线结构光测量系统。根据鞋底打磨场景所需测量范围的要求,结合线结构光成像原理,进行
最优控制是现代控制理论的重要组成部分,现已成为解决工业问题的重要工具。目前已被广泛运用到飞行器轨迹规划、经济管理、化学医药、能源电力等领域,并带来了巨大的经济效益,引起了海内外学者广泛的关注和研究。然而在实际的工业问题中,与工程安全密切关联的路径约束给最优控制问题的求解带来了诸多困难。针对如何高精、高效求解包含路径约束的最优控制问题,本文基于课题组研发的MWorks-NSOCP平台,对路径约束的处
电力企业需要定期对发电机进行检修以掌握其长期运行后的膛内状况。传统的人工检修方法需要抽出发电机转子,存在检测效率低、劳动强度大和安全隐患高等缺陷。为解决这一问题,能够在不抽离转子的情况下进入发电机膛内开展检测作业的爬壁机器人正逐步得到应用。目前,国产的发电机检测机器人尚处于测试阶段,样机均采用爬行于定子的方式,而由于部分型号发电机的定子内壁存在挡风板,极大地限制了该类机器人的检测范围,因此其通用性
随着第四次工业革命的兴起,将人工智能技术融入到工业自动化领域,是未来科技领域举足轻重且意义深远的一个发展方向。由于人工智能实现对于系统的实时性、稳定性、安全性有诸多要求,大多数的实验停留在仿真阶段,并没有得到真正的落地。主要的困难在于虚拟环境并不能同实际环境做到完全一致,同时将虚拟环境中的控制策略迁移到实物系统中也不是一蹴而就的事情。基于信息物理系统方法,本文设计了一种虚实结合的控制系统框架。论文