论文部分内容阅读
随着高性能永磁材料的进步和电力电子技术的发展,中等功率永磁同步电机在混合动力车辆中得到了越来越广泛的应用。双机械端口电机是一种具有两个独立控制机械端口的新型永磁同步电机,基于这种电机的电力无级变速系统可以实现丰田Prius的全部功能,是目前深度混合动力的方案之一,也是研究热点。
本文对永磁双机械端口电机的数学模型,设计方法等方面内容进行了研究,主要工作如下:
基于永磁磁链、直轴电感和凸极率等三个永磁电机内部参数表达的标幺化永磁电机数学模型,建立了表征永磁电机运行特征的电流、功率因数和电压等参数,与电机永磁磁链、直轴电感和凸极率这三个内部关键参数的定量关系,并将这种定量关系提炼成“设计平面”概念。
推导出一般设计平面与单位设计平面的转化关系式,将电机参数变化对电机运行特征的影响和电机工作点变化对电机运行特征的影响有机统一在一起,从而形成基于单位设计平面的车用永磁电机设计方法。这种方法将面向电机全工作区域的设计转化为对电机关键参数的设计。
以空载气隙磁密、倒气隙函数和绕组函数的谐波模型为基础,推导出永磁电机中磁动势、永磁磁链等其他物理量的谐波表达式,分析了谐波构成、影响因素和不同物理量间谐波相互作用关系,将永磁电机谐波模型根据具体情况适当简化,得到了较为准确的永磁电机设计用公式。
以永磁电机谐波模型为基础,给出了双机械端口电机设计过程和设计方法。包括磁路设计、绕组设计和关键参数设计。针对双机械端口电机设计中的特殊问题,即内外空间双重限制和内外磁场耦合,给出了有效应对方法。利用有限元方法对双机械端口电机进行了电磁场分析,并将仿真结果与谐波模型计算结果进行对比,二者在低频范围内吻合度较高,证明了谐波模型在电机设计中的有效性。
将上述研究成果应用于“863”课题北汽SUV深度混合动力的52kW/38kW永磁双机械端口电机设计,实验验证了设计结果。该混合动力车辆目前已经通过国家交通部实验场的动力性测试,最高车速为124km/h,最大爬坡度为30%,0~100公里加速时间为28.9s。