论文部分内容阅读
卫星平台是卫星的重要组成部分,是用于支持有效载荷正常工作的所有系统构成的整体。卫星平台由分系统串联而成,而分系统又由众多单机组成。在公用卫星平台上安装不同的有效载荷,就可形成不同功能的卫星。因此,研制高可靠性的卫星平台,就显得至关重要,这也带来卫星平台的可靠性评估问题。卫星平台的寿命数据主要来自于在轨遥测试验,通过分析,可以根据在轨遥测试验建立不等定时截尾寿命试验模型。现有的不等定时截尾数据下的相关研究非常零碎,不成体系,难以解决实践中的问题。针对这些问题及工程实践的需求,本文在威布尔分布和指数分布场合,利用不等定时截尾数据,对卫星平台的可靠度进行统计推断,目标包括可靠度的点估计及置信下限。从有失效数据和无失效数据、寿命数据和其他可靠性信息的融合、单机和系统等多个方面,开展了以下研究工作:(1)指数分布场合不等定时截尾有失效数据下的单机可靠性评估方法。根据不等定时截尾有失效数据,提出指数分布参数的点估计和置信下限的计算方法,等同于给出了可靠度的点估计和置信下限。首先将分布参数的极大似然估计作为点估计,随后依次利用枢轴量、样本空间排序法、Fisher信息量和改进的bootstrap方法,建立分布参数的置信下限。最后,通过蒙特卡罗实验及卫星平台中的数管计算机的应用,比较了不同方法的优劣,发现基于枢轴量的置信下限效果最好。(2)威布尔分布场合不等定时截尾有失效数据下的单机可靠性评估方法。根据不等定时截尾有失效数据,给出威布尔分布可靠度的点估计和置信下限。首先利用极大似然法和最小二乘法,推得分布参数的极大似然估计和最小二乘估计,继而求得可靠度的点估计。针对极大似然估计,讨论了极大似然估计的存在性,明确了其不存在的场合。另外,提出了极大似然估计的近似解,给出了封闭的表达式。针对最小二乘估计,提出了两种模式。随后,依次根据枢轴量、Fisher信息矩阵和改进的bootstrap方法,建立可靠度的置信下限。其中,枢轴量是基于最小二乘估计提出的。而在利用Fisher信息矩阵时,根据信息矩阵得到极大似然估计的协方差,再转化为可靠度的估计的方差,在此基础上给出了可靠度的置信下限。另外,所用的是观测信息矩阵,而非目前常用的利用极大似然估计近似所得的。最后,通过蒙特卡罗仿真实验和卫星平台中的蓄电池的应用,比较了各种点估计和置信下限的优劣,探讨了不同点估计和置信下限在不同条件下的适用性。(3)不等定时截尾无失效数据下的单机可靠性评估方法。在威布尔分布和指数分布场合,根据不等定时截尾无失效数据,给出可靠度的点估计和置信下限。首先利用配分布曲线法,推得分布参数的两种最小二乘估计,继而可得可靠度的两种点估计。随后通过发掘配分布曲线法中的隐含信息,求得了样本中各个时刻处的可靠度置信下限,通过曲线拟合,给出了可靠度的置信下限。由于可靠度的点估计和置信下限都根据配分布曲线法计算而来,从而保证了应用中的一致性。最后,通过蒙特卡罗仿真实验和卫星平台中的陀螺及GPS接收机的应用,比较了两种点估计,并对比了新提出的置信下限与已有的置信下限,继而分析了不同方法的优劣,从中选出了最优的点估计,同时也发现新提出的置信下限优于现有方法。(4)融合不等定时截尾数据和其他可靠性信息的单机可靠性评估方法。在威布尔分布和指数分布场合,利用Bayes理论,通过融合不等定时截尾数据和其他可靠性信息,给出可靠度的Bayes点估计及置信下限。首先根据其他可靠性信息确定分布参数的验前分布,随后结合Bayes理论,推出分布参数的验后分布,并将其转化为可靠度的验后分布,据此求得可靠度的Bayes点估计和置信下限。最后,通过蒙特卡罗实验和相应的单机的应用,检验了可靠度的Bayes点估计和置信下限,发现融合后的结果精度大大提高。(5)基于Bayes信息融合的卫星平台系统可靠性评估方法。首先研究了基于Bayes信息融合的贮备系统的可靠性评估方法。在对现有两种方法的基础上,提出了两种新的计算方法,结合分布参数的验后分布,推得贮备系统的可靠度的验后分布,继而得到贮备系统的可靠度的Bayes点估计和置信下限,并通过蒙特卡罗仿真试验和卫星平台中的陀螺的应用,比较了不同方法的优劣。随后,明确了串联、并联和表决系统的评估方法。最后,在此基础上,基于Bayes信息融合提出了卫星平台系统的可靠性评估方法,并通过一个算例说明了该方法的具体运用。