论文部分内容阅读
随着目前环保意识的不断增强,以及石油能源的不可再生,为了应对环境污染、燃油供求矛盾和降低燃料消耗等一系列问题,要求汽车铸件不仅要有很强的韧性,而且要有较轻的质量,以及绿色环保等特性。缸体是发动机的核心部件,在生产时使用铝合金,可以减轻其重量,最终达到减轻整辆车重量的目的。对于发动机缸体的生产,目前有主要的三种铸造工艺:重力铸造、低压铸造以及压力铸造。而在这三种工艺中,相比低压及重力铸造,压力铸造技术不仅生产率较高,而且能生产出各种形状复杂的铝镁合金产品,铸件的精度、强度和表面硬度都比较高,已经广泛应用到汽车、航空航天、电子及其他行业当中。因此,本课题采用压力铸造技术进行研究。发动机缸体的工艺特点是:形状结构复杂;加工的平面、孔较多;加工精度要求高而且壁厚不均,属于非常典型的箱体类加工零件。本文结合压力铸造与缸体自身的特点,对发动机缸体进行结构分析、铸造工艺设计、压力铸造参数设置以及对其工艺验证进行研究。主要包括:对铸件的浇注系统、充型过程、凝固过程进行数值模拟,预测可能产生的铸造缺陷,从而确定合理的工艺方案等内容。本课题依据压力铸造充型过程与凝固过程的基本理论,首先将缸体模型导入铸造模拟软件中,然后设计正交实验的方法对铸件进行压力铸造工艺优化设计。在对铸件进行模拟时,先对铸件模型进行网格划分,设计不同内浇口截面积,研究对铸件缩孔缩松产生的影响,确定最佳的内浇口截面积,再设计正交实验对铸件模拟分析,并对可能产生铸造缺陷的位置进行预测,之后对所得结果进行数学极差分析与方差分析,通过相应的计算分析,获得最佳的压铸工艺参数,最终确定发动机缸体成型工艺的模拟优化方案,即:内浇口面积为6.5x103mm2,压射速度为6m/s,金属液浇注温度为680℃,模具预热温度为240℃。