【摘 要】
:
近年来,随着我国大型装备领域快速发展,大型零部件精密制造与装配需求日渐增多,进而对制造与装配过程中涉及的大尺寸精密测量技术的要求越来越高。高精度大空间定位系统(Accurate Large-scale Positioning System,ALPS)作为一种新型的大尺寸测量设备,具有几米至几十米测量范围、多点并行以及亚毫米级定位等特点,逐渐替代传统的大尺寸测量设备,被广泛应用于大空间精密测量场合。
【基金项目】
:
陕西省重点研发计划基金(编号:2018ZDXM-GY-083);
论文部分内容阅读
近年来,随着我国大型装备领域快速发展,大型零部件精密制造与装配需求日渐增多,进而对制造与装配过程中涉及的大尺寸精密测量技术的要求越来越高。高精度大空间定位系统(Accurate Large-scale Positioning System,ALPS)作为一种新型的大尺寸测量设备,具有几米至几十米测量范围、多点并行以及亚毫米级定位等特点,逐渐替代传统的大尺寸测量设备,被广泛应用于大空间精密测量场合。当前,ALPS系统虽然静态测量精度可以达到±0.2 mm,但受限于基站测角误差随机波动以及外界环境影响,系统测量稳定性和抗干扰性较差。因此,分析系统误差源,研究现场基站测角快速评定方法,以此为依据,探讨基站测角精度提升和误差补偿方法,对提升系统测量精度和稳定性具有重要意义。本文对其误差影响因素进行了分析,重点开展基站性能优化方法、误差补偿以及测角精度评定方法等技术研究。主要研究内容如下:1)在分析ALPS的系统工作原理、测量模型和系统测量精度影响因素的基础上,研究测站误差产生机理;通过三维建模软件仿真系统测量过程,分析单站测角误差对最终系统测量精度的影响,研究系统测量误差分布情况,设计基站测角精度的实现方法。2)为了进一步提高系统测量精度,对转速波动和主轴摆动优化进行分析,优化基站动态性能,实现了单站测角精度从±18″到±5″的提升。为进行基站测角精度的准确评估,通过三维软件建立模型分别提取仿真初值,分析多齿分度台、激光跟踪仪和发射基站初值的拟合关系,研究基于多齿分度台的实验室高精度测角评定方法和基于激光跟踪仪的现场快速测角评定方法,并通过初值和拟合值结果比对验证了两种评定方法的可行性。3)在分析基站动态性能优化的基础上,研究基于参考传感的基站测角误差补偿方法,建立了误差补偿模型,并设计了补偿接收器组和基于ZYNQ的多通道高速误差补偿处理平台,通过对信号通道增加补偿单元,进行时域匹配和补偿处理,实现了短时近距离空间扰动误差的实时补偿和长时间环境变化引起的测量系统误差的补偿,减少了基站测角误差波动。4)为验证本文提出的基站测角精度优化方法的可行性,搭建了基于多齿分度台的实验室评定平台和基于激光跟踪仪的现场快速评定平台,分别开展补偿接收单元、补偿方法性能和评定方法的准确性验证实验,通过多齿分度台比对验证单台基站的最大测角误差为1.044角秒,激光跟踪仪比对验证单台基站的最大测角误差为1.296角秒,满足±1.5″测角精度要求。
其他文献
热红外目标跟踪技术是自动目标识别(ATR)领域的研究热点。热红外图像缺乏清晰的纹理和轮廓特征,传统的跟踪方法难以提取到有效的目标表征信息,在跟踪任务中常会受到相似物、遮挡物的干扰,出现跟踪错误。针对以上问题,本文基于表征学习理论,提出了针对热红外目标跟踪的深度学习方法。主要工作如下:(1)针对热红外目标在跟踪过程中受到相似物干扰的问题,设计融合注意力机制的分层预训练特征提取网络。深入分析了热红外目
随着人工智能的蓬勃发展,智能化战争已经来临,不断提高军事训练的科技感和智能度,提升军事训练实战化水平成为我们必须关注的重要课题。靶标体系研究在军事研究领域具有举足轻重的地位,靶即为侦查打击对象,标即提供测试值。本课题来源于中国兵器工业试验测试研究院所规划靶标体系研究中的子课题“基于人工智能的人形靶等效毁伤感知与评估”。针对传统的靶场训练中靶标感知毁伤信息不及时,人工参与度强,训练成本高等问题,本课
科技创新推动着社会生活不断的发展前进,人工智能使得人类的生产生活方便快捷。计算机视觉技术的出现更是加速了人工智能领域的发展,作为其重要分支之一的人体姿态估计技术,目前已在医疗、交通、军事等各个领域有着广泛的应用。在军事装备的智能化发展中,人体姿态估计算法为战场态势感知、实时精准打击提供了一定的技术支持。展开人体姿态估计算法的研究,对于军事行动指挥、国防安全保障有着重要的意义。但由于军事环境复杂,存
盖革模式雪崩光电二极管(Geiger Mode Avalanche Photon Diode,GM-APD)阵列激光雷达是一种新型的非扫描式的光子计数雷达,可以响应单光子级能量的回波信号,具有极高的探测灵敏度,使得探测微弱信号成为可能,已被广泛应用于巡航制导、地形测绘、水下探测等领域。但由于GM-APD是概率型器件且激光在介质中具有快速衰减的特性,导致探测到的回波信号过于稀疏,需要大量累计才能恢复
随着精密光学元件制造技术的快速发展,大口径光学元件在国家各项重大科学工程中被广泛应用,随之对大口径光学元件面形检测技术提出更高的要求,现有的光学元件检测技术很难同时满足大口径、高精度的检测需求。子孔径拼接是一种高精度、低成本的面形检测方法,它使用小口径标准光学元件对大口径元件进行检测,降低检测难度的同时具有干涉测量的高精度优势,可提高横向分辨率,获得波面中频误差信息。论文基于子孔径拼接的大口径平面
碳化硅铝基(SiCp/Al)复合材料具有低密度、高比强度、低膨胀系数、耐磨损、耐腐蚀等优点,在电子封装、航空航天、汽车等领域应用前景广阔。然而采用传统的机械加工方法加工存在效率低、刀具磨损严重、易崩裂等问题,为实现SiCp/Al复合材料的高效高质量加工,本文提出电弧放电-电解组合加工的方法。具体研究内容及结果如下:首先,基于铜、45钢、石墨及钨铜合金4种材料电极,开展了SiCp/Al复合材料的电弧
微光学元件是一种常见的小型化光学元件,近年来,随着其应用范围的不断扩大,微光学元件的产量和品种也不断增加,因此,微光学元件三维形貌的检测也变得愈发重要。数字全息技术凭借无损测量、全视场成像、实时测量等优点被广泛的应用在微光学元件形貌检测领域,然而传统的数字全息技术无法测量台阶这样相邻点之间的光程差超过激光器波长的微光学元件,而双波长数字全息技术可有效解决该问题,故本文研究双波长数字全息法微光学元件
随着无人机技术的发展,对无人机的开发应用也逐渐展开。因单个无人机存在能量、搭载量和灵活性等诸多限制,多无人机组网技术也成为了新的研究热点。而在FANETs中,路由协议是网络的核心,它决定了无人机节点之间的通信质量和网络性能。因此本文对路由协议在FANETs网络中的应用进行了部分研究。针对于无人机拓扑变化频繁的情况,固定的消息发送周期难以及时更新网络链路与拓扑变化的问题,首先,对OLSR协议进行消息
GM-APD(Geiger-Mode of Avalanche Photo diodes)阵列激光雷达因其能耗低、探测距离远等优势在军事目标探测领域成为研究热点。针对目前激光雷达目标探测图像重构计算复杂度高、耗时长的问题,本文研究了激光雷达图像重构技术,选取多核DSP作为图像重构处理硬件平台,将本文所提重构算法在多核DSP上进行并行设计与实现,并优化了代码和存储器性能,提高了图像重构的处理速度。具
越来越多的机构、企业及其部门之间逐渐实现互联互通,形成了一个多域环境。多域环境有助于跨域共享信息资源,允许成员进行跨域授权、跨域访问等操作,也方便管理者对用户及权限等进行统一管理。然而,由于多域环境的复杂性,来自不同域的用户数量众多,权限复杂多样,容易发生授权错误、身份伪造和权限伪造等安全问题,从而造成非法访问。因此,多域环境中的各类用户在域内或跨域访问资源时,必须采用合适的访问控制机制,以避免非