【摘 要】
:
近年来,我国电网的发展速度日益加快,其结构也变得日益复杂,电网运行方式的多变对电力系统的稳定运行提出了更高的要求。在规模不断扩大的广域电力系统中,仅依靠局部的反馈控制器已经不能使电力系统的稳定运行得到满足,信息的远距离传输和控制在相量测量单元和广域量测技术的快速发展下成为可能,为大规模的分布式同步测量和协调控制带来了新的契机。而实际广域电力系统的协调控制在完成远距离信息的采集、传输及处理的过程中会
论文部分内容阅读
近年来,我国电网的发展速度日益加快,其结构也变得日益复杂,电网运行方式的多变对电力系统的稳定运行提出了更高的要求。在规模不断扩大的广域电力系统中,仅依靠局部的反馈控制器已经不能使电力系统的稳定运行得到满足,信息的远距离传输和控制在相量测量单元和广域量测技术的快速发展下成为可能,为大规模的分布式同步测量和协调控制带来了新的契机。而实际广域电力系统的协调控制在完成远距离信息的采集、传输及处理的过程中会产生明显的时间延迟现象,我们称之为时滞现象。即使微小的时滞也会使原本性能良好的控制器失效,对电力系统的稳定性造成的影响十分严重。因此,研究时滞电力系统的稳定性分析非常有必要,进一步设计性能良好的控制器也有重要的意义。本文主要从以下方面针对此问题进行研究:(1)研究了基于时滞依赖矩阵泛函的变时滞电力系统的稳定性问题。首先,充分考虑时滞变化率对电力系统稳定区域的影响,构造一种新的含时滞依赖矩阵的Lyapunov泛函。然后,在解析过程中采用新的积分不等式对时滞分割后的积分项进行处理,得到保守性较小且计算量较少的稳定性结论。(2)研究了区间变时滞影响下不确定电力系统的改进型稳定判据。首先,构造一种新的乘积型Lyapunov泛函,其中不仅加入了时滞依赖矩阵,还加入了负定项,满足泛函整体依然正定,这放松了对泛函的约束条件,降低了稳定判据的保守性。然后,采用新的积分不等式对时滞分割后的积分项进行处理,得到保守性较小的稳定性判据,扩大了电力系统的稳定运行区域。(3)研究了区间变时滞影响下不确定电力系统的稳定性问题并设计镇定器。首先,构造了一种含多重积分和增广向量的新型Lyapunov-Krasovskii泛函。然后,在单重Wirtinger积分不等式的基础上引入双重Wirtinger不等式对泛函导数进行估计,并采用凸组合方法,得到具有更小保守性的系统鲁棒性稳定判据。此外,设计了带记忆和无记忆反馈控制器,并运用分歩线性化方法,得到了严格满足线性矩阵不等式条件的镇定器。
其他文献
永磁同步直线电机(Permanent Magnet Linear Synchronous Motor,简称PMLSM)因其结构简单,动态特性好,力能指标高,推力密度大等特点越来越成为了直线电机领域的研究主流。但是,PMLSM中存在齿槽力和端部铁心开端造成的端部力,造成运行时具有推力波动,这会影响电机在运行时定位精度;同时,长次级结构的PMLSM永磁材料用量多,电机成本高,这影响了电机的推广应用。基
近年来,基于半导体技术的量子点材料被提出在环境传感领域的开发应用。本论文特地生长了具有独特耦合结构的In Ga As/Ga As表面量子点(surface quantum dots,SQDs)材料,对其气敏特性进行研究。首先,介绍了量子点的制备和表征技术。论文中需要研究的样品为SQDs与多层掩埋量子点(buried quantum dots,BQDs)组成的耦合结构,需要利用分子束外延技术生长垂直
近年来能源互联网发展迅猛,我国在光伏发电和储能等技术方面的研究也硕果连连,光伏发电成本逐渐下降。在国家政策的有力支持下,安装家用光伏发电系统的家庭如雨后春笋。但是怎么样让安装的光伏系统的效用达到最大,光伏用户获得最大收益,仍然有待进一步的深入研究。因此家用光伏发电系统的经济调度是一个非常有意义的研究课题。首先,文章分析了光伏发电的国内外研究现状,发现传统调度中存在的问题,表明本文工作的必要性。为了
双变量交交变频器是一种很有前途的低成本自动化调速设备,其输出频率与输出电压可以单独控制,利用这一特性,提出一种基于电流跟踪的双变量交交变频矢量控制策略,使系统调速更加准确、迅速、稳定,并提高系统的动态性能。首先,对本文所涉及原理进行详细分析。包括余弦交截法、矢量控制、双变量控制原理等,其中对矢量控制三种磁场定向方式分别进行了定性分析,对比三者的优缺点,最终确定以转子磁场定向作为电机矢量控制磁场定向
随着科学技术的发展,电气设备向着系统化、自动化和智能化的方向发展。滚动轴承广泛应用于电机等旋转电气设备中,可靠的故障监测系统是电气设备正常运行的保障。伴随设备的发展,故障监测设备的采样频率与采样时间逐渐增加。在实际的滚动轴承监测过程中,常伴随着数据量大、不同噪声及负载变化等情况。而传统的信号处理以及机器学习的故障诊断方法,难以快速有效的解决上述问题。本文在前人研究的的基础上,针对不同具体问题,提出
磁悬浮技术利用磁场力将悬浮体与支撑体隔离开,相互间无机械接触,具有摩擦阻力小、无机械磨损、噪声低、寿命长等一系列优点,在磁悬浮列车、磁悬浮轴承和磁悬浮平台等领域中得到广泛应用。本文针对长行程磁悬浮运输系统存在成本高、耗能高的不足,提出了一种新型磁阻式悬浮平台系统,对其工作机理、创新结构、电磁特性及性能优化,以及气隙控制方法等关键技术问题展开研究。主要研究内容如下:提出一种新型磁阻式悬浮平台系统,具
能源问题在当今社会越来越被人们所广泛关注,建设资源节约型社会的需求越来越高,而变频技术作为节能领域的主流选择,自然成为了学者们关注的焦点。针对传统交交变频技术存在的系统所需功率器件较多、控制复杂、硬件电路成本较高等问题,本课题提出了一种区别于传统交交变频技术的三相输入型阻塞斩波交交变频控制系统,研究并设计了基于d SPACE的三相输入型阻塞斩波交交变频控制系统。在传统交流斩波调压电路的基础上,本文
永磁体助磁的单相双凸极电机(Permanent Magnet Assisted Single Phase Doubly Salient Motor,PMASPDSM)结合了开关磁阻电机转子结构简单、坚固和永磁电机高效率的特点,具有良好的应用前景。可以应用在智能家居、家用电器等小功率应用场合。本文在对其的研究与分析之上,设计一台额定功率45W,额定转速2000r/min的PMASPDSM。论文的主要
变压器作为最重要的电网设备之一,其运行的可靠性将直接影响到电力系统的稳定与安全。选用科学的、合理的检修策略是保证变压器可靠运行的有效方法,根据变压器的运行状态制定检修计划,是目前应用效果最好、前景最为广阔的检修方式之一。对变压器进行准确有效的状态评估是变压器状态检修的核心,也是保证状态检修的关键所在。为了降低运行维护的成本,减少因不必要检修造成的二次伤害,提高电网运行的可靠性,对变压器状态评估以及
近年来随着电力电子技术、控制理论以及微型计算机技术发展成熟,高效率、高控制精度的永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)在民用和工业领域中得到越来越多的应用,相关方向的研究使永磁同步电机控制朝着更高效更稳定的方向快速发展。传统机械型传感器存在占用电机内部空间、调试工作量大、成本高、易出现信号干扰故障等问题,因此永磁同步电机无速度传感器研究成为本