新型网络环境下数据安全的核心技术研究

来源 :电子科技大学 | 被引量 : 1次 | 上传用户:woshishagua6
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着云计算(Cloud Computing)和群智感知(Crowdsensing)等新型网络环境的发展,这些新型架构已经成为承载各类应用的关键基础设施。然而,新型网络环境下数据安全与隐私威胁日趋多样化、复杂化和规模化。这对数据的安全采集、存储与使用带来了严峻挑战。具体来说,在数据的安全采集阶段,现有的研究成果大多需要用户与服务器在线交互,无法满足在异常网络下支持用户离线的数据采集;在数据的安全存储阶段,现有的研究成果大多基于文本类型的数据存取,对于空间数据和DNA数据的安全检索方案较少,且存在效率低、访问控制弱以及查询功能单一等问题;在数据的安全使用阶段,尤其在基于大规模数据集的深度神经网络训练方面,现有的训练技术未考虑训练过程中计算结果的可验证性和用户数据质量的不一致性问题。针对上述挑战,本文研究新型网络环境(聚焦于云计算和群智感知)下数据在采集、存储和使用方面存在的安全问题。具体的研究内容如下:1.数据采集阶段安全的真值发现技术:(1)提出一种在单云配置下安全且支持用户离线的真值发现方案EPTD。该方案可实现在单服务器环境下支持用户离线的真值发现。除此之外,我们设计了一种双重数据混淆机制,其可以保证在真值发现过程中用户原始数据和权重的隐私性。(2)提出一种安全高效且支持结果验证的真值发现方案V-PATD。该方案可以高效地验证服务器聚合结果的完整性。除此之外,所设计的可验证方案满足公开可验证性、支持多数据源性、支持非固定的外包函数以及易扩展性。另一方面,我们设计了一种基于本地差分隐私的数据扰动方案,其不仅可保证单个数据的隐私性,同时保留了混淆数据和原始数据在统计性质上的不变性。2.数据存储阶段的可搜索加密技术:(1)提出一种支持任意几何区域内细粒度访问控制的范围搜索方案EGRQ。与现有方案相比,该方案可以显著降低索引和陷门生成过程中的本地存储开销。除此之外,我们构造了基于多项式的访问控制策略,其可以实现密文环境下对搜索用户细粒度的访问控制,从而保证每个用户只能访问其被授权的数据。(2)提出一种高效且支持细粒度访问控制和布尔查询的DNA相似度查询方案EFSS。在EFSS中,我们首次设计出一种安全的近似算法,其可将密文环境下DNA序列之间的编辑距离计算问题转化为二者的集合对称差计算问题。这可以显著减少密文下需要匹配的元素数量。此外,我们构造了一种高效的基于多项式的访问控制策略,其可以实现密文环境下对搜索用户细粒度的访问控制。我们设计了一种新的布尔搜索方法来实现复杂的布尔查询,如对基因进行“AND”和“NO”的混合查询。3.数据使用阶段安全的深度学习技术:(1)提出一种安全且支持对服务器计算结果可验证的方案Verify Net。该方案可实现在用户可接受的计算开销下验证服务器返回结果的正确性。除此之外,我们提出了一种对本地梯度的双重混淆方案,其可以保证在分布式学习过程中用户本地梯度的机密性。除此之外,该方案支持部分用户在协议执行过程中的异常退出,并保证在用户离线的情况下依旧可执行密文下的梯度聚合。(2)提出一种不规则用户下安全高效的深度学习训练方案PPFDL。该方案可实现对用户的梯度、可靠性以及聚合结果的隐私保护。此外,我们设计了一种新的策略去实现对每一个用户的权重(即可靠性)分配。对于权重低的用户,降低其生成的梯度在聚合运算中的比例,从而降低不规则用户对训练的负面影响。PPFDL同样支持部分用户在训练过程中的异常退出,并保证在一定量用户退出的前提下协议的顺利执行。对于上述的所有方案,我们都进行了充分的安全性分析,并证明了上述方案在已定义的威胁模型下的安全性。除此之外,通过大量的实验分析以及与现有方案的对比,论证了我们提出的方案在性能方面的优势。
其他文献
新测序技术的数据产生能力已经超越著名的摩尔定律,当前基因组数据正以12-18个月10倍以上的速度增长。数据处理所耗费的时间、人力与经济开销在整个测序流程中所占的比重越来
随着信息时代的来临,人工智能从学术研究转变为应用驱动,智能系统用于认知、识别、分析和决策等方面,其本质和最终目标是模拟人类意识与思维的过程。由于大量数据、复杂的深
目标覆盖问题是无线传感网络(WSNs)中的一个基本问题。以往对目标覆盖问题的研究,大多基于0/1圆盘感知模型,这种监测模型是一种理想化的模型。近年来,人们提出了一种更加符合实际应用场景的概率感知模型。在基于概率感知模型的传感网络中,目标通常需要多个传感器联合监测,因此0/1圆盘感知模型并不适用于概率目标覆盖问题。此外,传统WSNs中的传感器节点由有限容量的电池供电,网络寿命受到能源的限制。随着能量
恶意检测是预测在线社交网络(OSN)中异常帐户或节点的问题。由于该问题适用于多种任务(例如恶意URL或用户内容分类),因此已引起计算机安全领域研究人员的广泛关注,识别恶意帐
近年来,随着生命科学技术不断发展,特别是在高通量测序技术(通常称为下一代测序,Next Generation Sequencing,NGS)的飞速发展推动下,生命科学中生成的数据量大大增加,基因组
近年来,随着经济的快速发展和人口的日益膨胀,汽车数量急剧增加,汽车在给人们提供便利的同时,也给道路交通系统带来严峻挑战,如:交通堵塞,事故频发等,这些都给人们的生命财产
人脸线条画是一种使用简单线条绘制的人脸肖像。在艺术创作、动画网页制作和刑侦安防等领域中,矢量格式的人脸线条画有着广泛的需求。虽然目前与人脸肖像画生成相关的研究已经非常丰富,但在将人脸图像转换为线条矢量图这方面的工作相对空缺。本文研究基于草图提取的人脸矢量化算法,旨在将输入的人脸图像转换为线条画风格的矢量图。本文聚焦于保持线条矢量图中人脸的面部特征及其可编辑性,首次提出双阶段的人脸矢量化算法:第一阶
煤矿资源在推动我国经济发展中具有重要作用,保证矿区的安全生产是矿区作业的首要工作,而准确高效地获取矿区地物信息则能有效辅助安排和部署矿区的安全生产工作。矿区地物类
随着强化学习算法在机器人场景上的应用与发展,此类算法表现出了巨大的潜力;同时,模拟框架的出现为基于强化学习算法的机器人训练任务提供了一个便利的训练方式。但是,大多数强化学习训练任务仍然是在单物理节点上运行,物理节点的性能成为了限制训练任务执行效率的一个瓶颈,迫切需要寻找一种途径解决单物理节点的性能限制问题;同时,强化学习算法在分布式平台上运行时会因为物理网络的延迟增加时间消耗,因此,有必要对通信开
随着技术的发展,手机已经成为移动支付、社交等日常活动中不可或缺的工具,身份认证是保护人们隐私和财产安全的有效措施,也是目前安全研究的重点之一。目前主流的安全认证方法中,数字密码要求用户牢记一组数字,每次认证时需要主动输入,在用户交互方面不太友好。指纹识别和人脸识别等认证方法,易于引起隐私泄露问题。上述认证方法属于被动性认证,即在进行认证时需要用户主动发起认证操作,并且这些认证方法只对用户进行一次身