论文部分内容阅读
由量子力学和信息科学相结合而产生的量子信息科学主要包括量子计算、量子度量学、量子模拟、量子通信和量子密码这五个领域。因为量子信息科学包含量子物理的特性,所以其在很多方面都表现出了巨大的优势,如具有强大并行计算能力的量子计算的计算速度远快于经典计算,能胜任很多经典计算所不能完成的任务;量子度量的精度在一些领域也已经突破了经典物理极限,甚至逼近了海森堡极限(量子力学极限)。 在这篇论文中,我们介绍了量子信息科学包含的五个主要领域的基本知识,其中重点介绍了量子计算。量子退相干现象是实现量子计算所必须要克服的一个主要障碍,我们介绍了克服量子退相干的三种方法:量子纠错码、消相干子空间和动力学退耦合,其中重点介绍了第三种方法。应用动力学退耦合的方法我们有效的消除了量子比特之间的次近邻相互作用因而大大提高了生成的簇态的保真度。另外,应用动力学退耦合方法的思想我们成功的将单轴自旋压缩态转变成了压缩性质更加优良的双轴自旋压缩态。我们还可以将制备自旋压缩态过程中的非线性噪声有效的消除掉。具体如下: 1.通过分析已经提出的制备链状簇态的方法,我们发现量子比特间的长程相互作用会导致生成簇态的保真度大大的降低。为了解决这一问题,我们提出了应用动力学退耦合方法来消除量子比特间次近邻相互作用的方案,其中我们分别在XY和Ising模型中研究了这一问题。我们提出的方法最终将不想要的次近邻相互作用有效的抑制掉了,因而大大提高了生成簇态的保真度。 2.我们提出了一个将单轴自旋压缩哈密顿转变成双轴自旋压缩哈密顿的方案,其中我们是依据Trotter-Suzuki近似展开理论完成的上述方案。和Liu等人提出的将单轴自旋压缩转变成双轴自旋压缩的方法[Y.C.Liu et al.,Phys.Rev.Lett.107,013601(2011)]相比,我们将外加脉冲对数从1000多减少到了50,这在实验上更容易实现。另外,和文章[C.Shen et al.,Phys.Rev.A87,051801(2013)]中的方法相比,我们的方法不依赖于系统中的粒子数而且需要的演化时间也比较短。我们在文章中也给出了Trotter-Suzuki近似展开方案的误差分析。 3.我们提出了一个在制备单轴自旋压缩态过程中既可以保护又可以加强压缩性质的方法,此方法是借助于外加脉冲序列来实现的。这里,“保护”是指系统演化过程中不受平方项的非线性噪声的影响,“加强”是指可以将单轴自旋压缩态转化成双轴自旋压缩态。保护自旋压缩是通过将二次项的噪声算符转化成总角动量算符的平方,进而应用总角动量算符的平方的守恒性实现的。加强自旋压缩也是借助于总角动量算符的平方的守恒性。通过数值模拟结果我们发现此方法的效果非常好,当外加脉冲足够多时,外加脉冲就能够将非线性噪声完全抑制掉,并同时将单轴自旋压缩态转化成双轴自旋压缩态。