论文部分内容阅读
随着市场竞争的日趋激烈以及市场需求的日趋多样化,越来越多的企业选择多品种小批量这种生产方式来快速的适应市场的变化。在当今的市场中,企业的竞争主要取决于产品的供货周期、质量和生产成本。先进的管理是实现在上述目标的一个重要手段。调度是生产管理的核心内容和关键技术,其任务是在企业有限的资源约束下,保证所选定的生产目标最优。科学的生产计划的安排方案,对于控制企业的在制品库存,提高产品交货满足率,缩短产品供货周期和提高企业生产率起着至关重要的作用。 本文首先介绍了订单型服装企业的特点,指出柔性加工将是服装加工企业的发展方向,智能技术在其中要起到重要作用也是发展的趋势,通过对目前比较热门的人工神经网络技术和遗传算法的介绍,针对它们的特点和缺陷,本文提出了一种以人工神经网络和遗传算法为基础的BP-GA智能混合算法,并通过实验证明了这种算法的有效性。同时利用BP-GA智能混合算法对订单型服装生产企业的设备配置比例进行了预测研究,旨在通过合理利用设备来提高设备利用率、降低生产成本,其中网络的输入参数是通过对服装各部件的分解,找到服装各部件的共同特点以及分析这些特征与设备配置之间的关系来确定的,输出函数是来自专家的设备配置比例方案,隐含层结点数是通过实验比较而得到。最后对预测模型进行了仿真,仿真结果令人满意,证明了这一方法的可行性。 随着我国市场经济的发展,高产值已不再是企业追求的主要目标,而准时生产准时交货的(Just in time,JIT)生产则成为企业在市场中取胜的必备条件,因而体现JIT思想,与交货期有关的提前/拖期问题成了新的研究热点。本文简要介绍了目前生产计划提前/拖期问题的研究状况,建立了一个该问题的数学模型,在此基础上,应用遗传算法,对交货期窗口下的提前/拖期问题进行了研究,并在计算机上得以仿真实现。仿真结果表明,该算法不受问题规模的限制,对于解决大规模复杂的问题更显示出其优越性,为MRPII与JIT思想在车间作业计划上的结合提供了有利工具。