论文部分内容阅读
近年来,随机系统已成为系统理论研究的一大热点,其在化学、生物、经济和物理等领域有着非常广泛的应用.在实际系统中,脉冲和时滞现象普遍存在,考虑这些因素可以使建立的模型与实际系统更加吻合.然而,在随机系统中引入脉冲和时滞,可能会导致系统不稳定或稳定性变差.因此,对脉冲随机时滞系统的稳定性进行研究有着十分重要的意义. 本文主要研究了几类脉冲随机时滞非线性系统的矩稳定性和轨道稳定性问题.基于Lyapunov稳定性理论,引入ψ型函数作为参照函数,将脉冲随机时滞非线性系统的p阶矩指数稳定性与几乎必然指数稳定性推广到了更一般化ψγ稳定性.并利用Razumikhin方法,借助Burkholder-Davis-Gundy不等式、It(o)公式等工具得到了这几类脉冲随机时滞非线性系统的p阶矩ψγ稳定与几乎必然ψγ稳定的结果. 文章的二、三、四章分别对一般的脉冲随机时滞非线性系统、带有Markov切换的脉冲随机时滞非线性系统以及中立型脉冲随机时滞非线性系统的稳定性进行了研究.基于Razumikhn方法分别给出并证明了这几类系统p阶矩ψγ稳定与几乎必然ψγ稳定的充分性条件.并利用仿真算例验证了所得结论的有效性.