论文部分内容阅读
α,β-不饱和醛是一类重要的化工原料,其C=O键选择性加氢产物不饱和醇类化合物更是香料、医药等产品生产过程中广泛使用的化学中间体,具有重要的经济价值。肉桂醛作为一种典型的α,β-不饱和醛探针分子,常用于C=C键和C=O键竞争性加氢机理和催化剂构效关系研究。在热力学上,C=C键比C=O键更容易发生加氢,因此实现高选择性的C=O键加氢极具挑战性。负载型金属催化剂是工业应用最为广泛的催化剂,其表界面结构是决定催化剂性能的关键因素。界面结构的构筑可以通过电子转移改变催化剂的电子结构,并利用对几何结构的修饰作用调节空间位阻效应,能够显著地影响催化剂的C=O选择性。基于以上特点,实现金属-载体界面结构的精准构筑是构建高性能α,β-不饱和醛加氢催化剂的一种关键手段。本论文以肉桂醛的选择性加氢为目标反应,以层状前驱体法制备的高分散合金催化剂为研究对象,针对合金催化剂对不饱和醇选择性不足的问题,提出了利用H2-O2循环气氛诱导法原位构筑氧化物@合金界面结构以提升C=O键选择性的新策略;进一步针对传统氧化物@合金界面结构由于活性位点被覆盖导致活性下降的问题,提出了利用H2/CO2混合气氛诱导法非原位构筑可渗透的非晶碳@合金界面结构,从而在改善选择性的同时保持活性的新思路,并揭示了不同类型界面结构所产生的界面效应对肉桂醛选择性加氢催化性能的影响机制。(1)以C=O键加氢选择性强化为出发点,以PtCl62-/MgAlGa-LDHs为催化剂前驱体,在H2-O2循环气氛下合成了具有Ga2O3@PtGa氧化物界面结构的合金催化剂,并通过改变气氛处理的循环次数实现了界面结构包覆程度的有效调节,重点探究了 Ga2O3@PtGa界面结构的构筑对催化性能的影响。Cs-corrected STEM、CO chemisorption和CO-DRIFT揭示了 PtGa合金纳米颗粒被Ga2O3界面层部分包覆,且Ga2O3界面层具有不可渗透的特点,降低了活性金属的暴露度。Ga2O3@PtGa催化剂在肉桂醛加氢反应中的C=O选择性达到87.5%,高于无界面的 PtGa 合金催化剂(71.7%)。Cinnamaldehyde adsorbed-DRIFT阐明了催化剂C=O键的选择性的提高可以归因于Ga2O3@PtGa界面结构能够通过位阻效应有效改善反应物的吸附态,减弱C=C键的吸附而选择性地活化C=O键。但同时,由于Ga2O3界面层的构筑引起催化剂活性位点数量的降低,导致反应2h的转化率由无界面PtGa催化剂的58.7%降低至46.6%,而催化剂的肉桂醇产率基本保持不变(42.1%和40.8%)。(2)以C=O键选择性提高的同时,保持催化剂的高活性为出发点,以PtCl62-/MgAlGa-LDHs为前驱体,在H2/CO2混合气氛下合成了具有C@PtGa非氧化物界面结构的合金催化剂,通过调变气氛处理温度和时间来调节界面结构的包覆程度,阐明了了 C@PtGa结构带来的界面效应对催化性能的影响。Cs-corrected STEM、EELS和CO chemisorption揭示了 PtGa合金纳米颗粒很好地被薄的非晶碳层覆盖,该碳界面层具有多孔可渗透的特点,活性金属暴露度无明显下降。C@PtGa催化剂在反应2h的转化率为90.7%,本征活性TOF为1546 h-1,C=O选择性为93.6%,所有指标均远高于无界面结构PtGa合金催化剂(58.7%、891 h-1、71.7%)和具有 Ga2O3@PtGa 界面结构的 PtGa合金催化剂(46.6%、866h-1、87.5%)。XPS、XAF 和 cinnamaldehyde absorbed-DRIFT则阐明了 C@PtGa界面结构的构筑有利于活性位点电子密度的提升,并通过空间位阻效应显著优化肉桂醛的吸附态,提高C=O键的选择性。尤为突出的是,非晶碳层可渗透的特点有利于保持活性金属的可接近性,且优化的肉桂醛吸附态还具有更高的C=O键活化能力,这使催化活性不但实现了保持还得到了大幅提高。