论文部分内容阅读
小型便携式激光通信系统是一种基于空间激光通信的新兴通信装置,优势为延迟短、通信速率高、抗干扰性强、体积小及保密性好等,是解决保密部门通信、突发应急事件通信、特殊与临时场合通信、军用和民用研究领域信息交换的最佳途径,能够解决“最后一公里”问题,具备巨大价值意义。所以,这一通信方式在今后具有良好发展潜力,具有广阔的应用空间。本文设计了一种适用于短距离的小型便携式激光通信接收系统,并测试了系统的通信性能。第一部分,本文探讨的是大气效应对激光通信的影响问题,深入分析大气散射效应与大气吸收理论模型,得到系统对应的通信波长1550nm。针对大气湍流影响的系统误码率开展研究,为后续设计大气湍流闪烁效应抑制方法提供理论基础。基于大气效应和系统体积等多方面因素,选取了与本系统相符的通信机制。第二部分,对小型便携式激光通信系统链路的各种损耗因素进行分析。针对链路方程而言,除大气影响因素外,讨论对系统性能造成影响的因素,包含损耗的对准误差、扩展损耗等。深入分析链路上损耗的主要参数,得到了系统所允许的最大光轴偏角和接收最大视场角。对不同像面偏差情况下的链路能量进行仿真与分析,获得子系统设计的相关技术要求。第三部分,完成了系统的设计研制及性能测试。对比常见的各种接收天线特征,讨论了常见激光通信接收天线的类型,进而完成了光学子系统的设计。同时,基于APD探测器,提出了一种控制闪烁方差的大气湍流抑制算法,并以该算法为基础设计了一种带有闪烁方差自动增益控制接收器。在对接收系统机械结构的设计基础上,完成了样机的组装。通过室内测试实验,进行了同轴度标定和对准测试工作。通过外场实验,测试了系统在湍流环境下的抑制效果和通信性能,得到了实际的链路接收能量。结果表明,系统的通信误码率降低至1E-12以下,系统对于闪烁方差的抑制能够达到3倍以上,有效缓解了大气湍流引起的光强闪烁问题,进一步验证了本系统的可行性。